Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Most Distant Cosmic Explosion Smashes Previous Record

13.09.2005


Scientists using the NASA Swift satellite and several ground-based telescopes have detected the most distant explosion yet: a gamma-ray burst from the edge of the visible Universe.



This powerful burst, probably marking the death of a massive star as it collapsed into a black hole, was detected on 4th September 2005. The burst comes from an era soon after stars and galaxies first formed, less than a billion years after the Big Bang.

"How a single star could generate so much energy as to be seen across the entire Universe remains an unanswered question," said Dr Nial Tanvir from the University of Hertfordshire, who joined with other scientists on four continents in using a multitude of telescopes to track the burst and its afterglow for days as the burst gradually faded. "The fact that we can see it may now provide us with a new tool to help understand those very early times."


"This is uncharted territory," said Dr. Daniel Reichart of the University of North Carolina at Chapel Hill, who spearheaded the distance measurement. "This burst smashes the old distance record by 500 million light years. We are finally starting to see the remnants of some of the oldest objects in the Universe."

To date, only one quasar has been discovered further out in the Universe. Yet whereas quasars are supermassive black holes containing the mass of billions of stars, this burst comes from a single star.

The discovery is being heralded as a major breakthrough in the study of the early Universe. "The hunt is now on for further such bursts which we hope to be able to use as cosmic lighthouses to discover the state of the universe at a time when the first stars had only recently turned on," said Andrew Levan, another team member from the University of Hertfordshire.

Scientists measure cosmic distances via redshift, the extent to which light is "shifted" towards the red (lower energy) part of the electromagnetic spectrum during its long journey across the universe. The greater the distance, the higher the redshift.

The 4th September burst, named GRB 050904 for the date it was detected, had a redshift of 6.29, which translates to a distance of about 13 billion light years from Earth. (The Universe is thought to be 13.7 billion years old.) The previous most distant gamma-ray burst had a redshift of 4.5. The most distant quasar known is at redshift 6.4.

Swift, a joint US/UK/Italian mission, detected GRB 050904 and relayed its coordinates to scientists around the world within
minutes. Gamma-ray bursts disappear quickly, which is why Swift was designed to autonomously detect and locate bursts and notify the science community via e-mail, Web sites and even mobile phone text messages.

The team discovered the afterglow with the SOAR (Southern Observatory for Astrophysical Research) telescope atop Cerro Pachon, Chile, and soon after it was picked up by the United Kingdom Infrared Telescope in Hawaii. Over the next several nights, these results were combined with further observations from the Gemini South telescope, also on Cerro Pachon, to calculate a redshift of greater than 6 via a light filtering technique.

Building upon all this information, a team led by Nobuyuki Kawai of the Tokyo Institute of Technology used the Subaru Observatory on Mauna Kea, Hawaii, to confirm the distance and fine-tune the redshift measurement to 6.29 via a technique called spectroscopy.

"We designed Swift to look for faint bursts coming from the edge of the Universe," said Dr. Neil Gehrels of NASA Goddard Space Flight Center, Greenbelt, Md., Swift principal investigator. "Now we’ve got one and it’s fascinating. For the first time we can learn about individual stars from near the beginning of time. There are surely many more out there."

Anita Heward | alfa
Further information:
http://www.ras.org.uk

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>