Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Most Distant Cosmic Explosion Smashes Previous Record

13.09.2005


Scientists using the NASA Swift satellite and several ground-based telescopes have detected the most distant explosion yet: a gamma-ray burst from the edge of the visible Universe.



This powerful burst, probably marking the death of a massive star as it collapsed into a black hole, was detected on 4th September 2005. The burst comes from an era soon after stars and galaxies first formed, less than a billion years after the Big Bang.

"How a single star could generate so much energy as to be seen across the entire Universe remains an unanswered question," said Dr Nial Tanvir from the University of Hertfordshire, who joined with other scientists on four continents in using a multitude of telescopes to track the burst and its afterglow for days as the burst gradually faded. "The fact that we can see it may now provide us with a new tool to help understand those very early times."


"This is uncharted territory," said Dr. Daniel Reichart of the University of North Carolina at Chapel Hill, who spearheaded the distance measurement. "This burst smashes the old distance record by 500 million light years. We are finally starting to see the remnants of some of the oldest objects in the Universe."

To date, only one quasar has been discovered further out in the Universe. Yet whereas quasars are supermassive black holes containing the mass of billions of stars, this burst comes from a single star.

The discovery is being heralded as a major breakthrough in the study of the early Universe. "The hunt is now on for further such bursts which we hope to be able to use as cosmic lighthouses to discover the state of the universe at a time when the first stars had only recently turned on," said Andrew Levan, another team member from the University of Hertfordshire.

Scientists measure cosmic distances via redshift, the extent to which light is "shifted" towards the red (lower energy) part of the electromagnetic spectrum during its long journey across the universe. The greater the distance, the higher the redshift.

The 4th September burst, named GRB 050904 for the date it was detected, had a redshift of 6.29, which translates to a distance of about 13 billion light years from Earth. (The Universe is thought to be 13.7 billion years old.) The previous most distant gamma-ray burst had a redshift of 4.5. The most distant quasar known is at redshift 6.4.

Swift, a joint US/UK/Italian mission, detected GRB 050904 and relayed its coordinates to scientists around the world within
minutes. Gamma-ray bursts disappear quickly, which is why Swift was designed to autonomously detect and locate bursts and notify the science community via e-mail, Web sites and even mobile phone text messages.

The team discovered the afterglow with the SOAR (Southern Observatory for Astrophysical Research) telescope atop Cerro Pachon, Chile, and soon after it was picked up by the United Kingdom Infrared Telescope in Hawaii. Over the next several nights, these results were combined with further observations from the Gemini South telescope, also on Cerro Pachon, to calculate a redshift of greater than 6 via a light filtering technique.

Building upon all this information, a team led by Nobuyuki Kawai of the Tokyo Institute of Technology used the Subaru Observatory on Mauna Kea, Hawaii, to confirm the distance and fine-tune the redshift measurement to 6.29 via a technique called spectroscopy.

"We designed Swift to look for faint bursts coming from the edge of the Universe," said Dr. Neil Gehrels of NASA Goddard Space Flight Center, Greenbelt, Md., Swift principal investigator. "Now we’ve got one and it’s fascinating. For the first time we can learn about individual stars from near the beginning of time. There are surely many more out there."

Anita Heward | alfa
Further information:
http://www.ras.org.uk

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>