Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Shows How Water May Enhance Catalysis

12.09.2005


Researchers at the Georgia Institute of Technology have uncovered important evidence that explains how water, usually an inhibitor of catalytic reactions, can sometimes promote them. The findings could lead to fewer constraints on reaction conditions potentially leading to the development of lower cost techniques for certain industrially important catalytic reactions. The results appear in the September 6, 2005 issue of Physical Review Letters.


A snapshot of the reaction in which a water molecule enhances the transformation of carbon monoxide to carbon dioxide. Illustration of reaction turning carbon monoxide (CO) into carbon dioxide (CO2) using a water molecule (H20) to enhance the catalytic activity of an eight-atom nanocluster of gold. Color key: oxygen atoms = red; hydrogen atoms = white; carbon atoms = aquamarine; gold atoms = gold; and magnesium atoms = green.



“Normally, in most catalytic reactions, water can stop the reaction. It kills the catalyst,” said Uzi Landman, director of the Center for Computational Materials Science, Regents’ and Institute professor and Callaway chair of physics at Georgia Tech.

And that’s a big problem because ensuring that a reaction is water-free can add to production costs. Many catalytic reactions occur at high temperatures, which evaporates the water, said Landman. “However, any time that the reaction temperature is lowered and there’s humidity unfavorable effects may occur. You hope that when you heat the reaction up that the adsorbed water will come off, but sometimes it doesn’t. Sometimes the adsorption of water leads to an irreversible modification, such as oxidation, and deactivation of the catalyst. It’s poison; it poisons the catalyst,” he said.


In the late 1980’s, Japanese scientist Masatake Haruta discovered that small particles of gold (which is chemically inert in bulk form and normally not a catalyst) are chemically very reactive. He also found that water can promote this catalytic activity.

Since the late 1990’s, Landman’s group has been using advanced quantum mechanical computational methods to investigate how and why nanoclusters of gold act as chemical catalysts under dry conditions. This led to certain predictions that were verified experimentally by Ulrich Heiz’s group, who is now at the Technical University of Munich.

Earlier this year, the two groups co-authored a paper in the journal Science. It showed theoretical and experimental evidence of the role of charging on the catalytic activity of gold nanoclusters made of eight atoms when they are bonded to naturally occurring oxygen vacancy defects on a magnesia surface that supports the gold. In the recent Physical Review Letters paper, the Georgia Tech group has made theoretical predictions on how a single water molecule can catalytically enhance a low-temperature reaction that turns carbon monoxide into carbon dioxide.

Using computer simulations, Landman and post doctoral fellow Angelo Bongiorno, found that the water molecule enhances the binding of an oxygen molecule to an eight atom gold nanocluster, either free or supported on an undefective magnesia substrate. The water molecule catalytically activates the aforementioned oxidation reaction of carbon monoxide. In the earlier studies on gold nanoclusters, defects in the support surface were required to give the gold a slight negative charge. In this latest study, the presence of a water molecule makes that requirement unnecessary.

Here’s how it works: the structure of the water molecule, H-O-H, is such that the end with the oxygen atom has a slight negative charge, while the two hydrogen atoms are positively charged. In the quantum molecular dynamics simulation, the negatively charged oxygen side of the water molecule bonds to one of the gold atoms, leaving the positively charged hydrogens of the water molecule dangling. Subsequently, an oxygen molecule (made of two oxygen atoms) binds favorably to a neighboring gold atom of the cluster and gets a slight negative charge in the process.

This results in an adsorbed slightly negatively charged oxygen molecule near one of the positively charged hydrogen atoms of the adsorbed water molecule. Since, in chemistry, (as in love) opposites attract, the two get together. So the oxygen pulls a proton (a positively charged hydrogen) from the water molecule resulting in formation of a hydroperoxyl (OOH) group and a hydroxyl (OH).

Now, this relationship can’t last because the addition of the hydrogen to the oxygen molecule to form OOH weakens the bond between the two oxygen atoms. All it takes to break that bond is a carbon monoxide molecule approaching from the gas phase, which bonds to one of the oxygens of the OOH to form carbon dioxide. This leaves the proton to return to the hydroxyl to reform the water molecule. The product carbon dioxide desorbes readily from the surface, and the left over oxygen atom stays bonded to the gold. But this single oxygen atom is very active (as singles often are) and is easily led away when another carbon monoxide comes along to bond with it to make a second carbon dioxide molecule.

“This reaction opens the door to a completely new idea; that polar molecules, like water, or molecules that are good proton donors may show us new channels of reactivity,” said Landman. “We may be able to take other catalytic reactions and use water as a promoter under some selective conditions,” added Bongiorno.

“In the future, we want to test the effect of multiple water molecules to see if there is a limit to how many water molecules can enhance reactions. In this case, we used magnesium oxide as a substrate. We’d like to know if the effect limited to that substrate or will it work with others?,” the two researchers said.

(a) H20 (in red and white) approaches a nanocluster of eight gold atoms supported on a defect-free magnesium oxide surface.

(b) The oxygen atom of the H20 binds to the gold, leaving its positively charged hydrogen atoms dangling. Meanwhile an oxygen molecule (O2) bonds to the gold at another location with one of the oxygen attached directly to the gold cluster. The adsorbed oxygen molecule acquires a slight negative charge. An approaching CO molecule (red and green) is shown at the top.

(c) The dangling end of the oxygen molecule attracts a positively charged hydrogen atom off the H20 resulting in a hydroperoxyl group (OOH) and leaving a hydroxyl (OH) where H20 was.

(d) The carbon atom of the CO binds to the OOH, which causes the hydrogen atom to head on its way to join back with the OH to reform H20.

David Terraso | EurekAlert!
Further information:
http://www.icpa.gatech.edu

More articles from Physics and Astronomy:

nachricht NASA's James Webb Space Telescope completes final cryogenic testing
21.11.2017 | NASA/Goddard Space Flight Center

nachricht Previous evidence of water on mars now identified as grainflows
21.11.2017 | US Geological Survey

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>