Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Shows How Water May Enhance Catalysis

12.09.2005


Researchers at the Georgia Institute of Technology have uncovered important evidence that explains how water, usually an inhibitor of catalytic reactions, can sometimes promote them. The findings could lead to fewer constraints on reaction conditions potentially leading to the development of lower cost techniques for certain industrially important catalytic reactions. The results appear in the September 6, 2005 issue of Physical Review Letters.


A snapshot of the reaction in which a water molecule enhances the transformation of carbon monoxide to carbon dioxide. Illustration of reaction turning carbon monoxide (CO) into carbon dioxide (CO2) using a water molecule (H20) to enhance the catalytic activity of an eight-atom nanocluster of gold. Color key: oxygen atoms = red; hydrogen atoms = white; carbon atoms = aquamarine; gold atoms = gold; and magnesium atoms = green.



“Normally, in most catalytic reactions, water can stop the reaction. It kills the catalyst,” said Uzi Landman, director of the Center for Computational Materials Science, Regents’ and Institute professor and Callaway chair of physics at Georgia Tech.

And that’s a big problem because ensuring that a reaction is water-free can add to production costs. Many catalytic reactions occur at high temperatures, which evaporates the water, said Landman. “However, any time that the reaction temperature is lowered and there’s humidity unfavorable effects may occur. You hope that when you heat the reaction up that the adsorbed water will come off, but sometimes it doesn’t. Sometimes the adsorption of water leads to an irreversible modification, such as oxidation, and deactivation of the catalyst. It’s poison; it poisons the catalyst,” he said.


In the late 1980’s, Japanese scientist Masatake Haruta discovered that small particles of gold (which is chemically inert in bulk form and normally not a catalyst) are chemically very reactive. He also found that water can promote this catalytic activity.

Since the late 1990’s, Landman’s group has been using advanced quantum mechanical computational methods to investigate how and why nanoclusters of gold act as chemical catalysts under dry conditions. This led to certain predictions that were verified experimentally by Ulrich Heiz’s group, who is now at the Technical University of Munich.

Earlier this year, the two groups co-authored a paper in the journal Science. It showed theoretical and experimental evidence of the role of charging on the catalytic activity of gold nanoclusters made of eight atoms when they are bonded to naturally occurring oxygen vacancy defects on a magnesia surface that supports the gold. In the recent Physical Review Letters paper, the Georgia Tech group has made theoretical predictions on how a single water molecule can catalytically enhance a low-temperature reaction that turns carbon monoxide into carbon dioxide.

Using computer simulations, Landman and post doctoral fellow Angelo Bongiorno, found that the water molecule enhances the binding of an oxygen molecule to an eight atom gold nanocluster, either free or supported on an undefective magnesia substrate. The water molecule catalytically activates the aforementioned oxidation reaction of carbon monoxide. In the earlier studies on gold nanoclusters, defects in the support surface were required to give the gold a slight negative charge. In this latest study, the presence of a water molecule makes that requirement unnecessary.

Here’s how it works: the structure of the water molecule, H-O-H, is such that the end with the oxygen atom has a slight negative charge, while the two hydrogen atoms are positively charged. In the quantum molecular dynamics simulation, the negatively charged oxygen side of the water molecule bonds to one of the gold atoms, leaving the positively charged hydrogens of the water molecule dangling. Subsequently, an oxygen molecule (made of two oxygen atoms) binds favorably to a neighboring gold atom of the cluster and gets a slight negative charge in the process.

This results in an adsorbed slightly negatively charged oxygen molecule near one of the positively charged hydrogen atoms of the adsorbed water molecule. Since, in chemistry, (as in love) opposites attract, the two get together. So the oxygen pulls a proton (a positively charged hydrogen) from the water molecule resulting in formation of a hydroperoxyl (OOH) group and a hydroxyl (OH).

Now, this relationship can’t last because the addition of the hydrogen to the oxygen molecule to form OOH weakens the bond between the two oxygen atoms. All it takes to break that bond is a carbon monoxide molecule approaching from the gas phase, which bonds to one of the oxygens of the OOH to form carbon dioxide. This leaves the proton to return to the hydroxyl to reform the water molecule. The product carbon dioxide desorbes readily from the surface, and the left over oxygen atom stays bonded to the gold. But this single oxygen atom is very active (as singles often are) and is easily led away when another carbon monoxide comes along to bond with it to make a second carbon dioxide molecule.

“This reaction opens the door to a completely new idea; that polar molecules, like water, or molecules that are good proton donors may show us new channels of reactivity,” said Landman. “We may be able to take other catalytic reactions and use water as a promoter under some selective conditions,” added Bongiorno.

“In the future, we want to test the effect of multiple water molecules to see if there is a limit to how many water molecules can enhance reactions. In this case, we used magnesium oxide as a substrate. We’d like to know if the effect limited to that substrate or will it work with others?,” the two researchers said.

(a) H20 (in red and white) approaches a nanocluster of eight gold atoms supported on a defect-free magnesium oxide surface.

(b) The oxygen atom of the H20 binds to the gold, leaving its positively charged hydrogen atoms dangling. Meanwhile an oxygen molecule (O2) bonds to the gold at another location with one of the oxygen attached directly to the gold cluster. The adsorbed oxygen molecule acquires a slight negative charge. An approaching CO molecule (red and green) is shown at the top.

(c) The dangling end of the oxygen molecule attracts a positively charged hydrogen atom off the H20 resulting in a hydroperoxyl group (OOH) and leaving a hydroxyl (OH) where H20 was.

(d) The carbon atom of the CO binds to the OOH, which causes the hydrogen atom to head on its way to join back with the OH to reform H20.

David Terraso | EurekAlert!
Further information:
http://www.icpa.gatech.edu

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>