Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid One-Pot Syntheses Developed For Quantum Dots

12.09.2005


New processes have applications in bioimaging and solar conversion



Efficient and highly scalable new chemical synthesis methods developed at the University at Buffalo’s Institute for Lasers, Photonics and Biophotonics have the potential to revolutionize the production of quantum dots for bioimaging and photovoltaic applications.
A patent has been filed on the methods, which were described last month in papers in the Journal of the American Chemical Society and Applied Physics Letters.

Quantum dots are tiny semiconductor particles generally no larger than 10 nanometers that can be made to fluoresce in different colors depending on their size. Scientists are interested in quantum dots because they last much longer than conventional dyes used to tag molecules, which usually stop emitting light in seconds. Quantum dots also are of great interest for energy applications because they can produce electrons when they absorb light, making possible extremely efficient solar-energy devices.



Both fabrication methods developed by the UB researchers involve using a single container, or "pot," and take just a few hours to prepare.

The UB scientists report that one of their rapid-solution synthesis methods enabled them to prepare robust, water-dispersible quantum dots for bioimaging, while the other one allowed them to prepare organically soluble quantum dots ready to be sequestered into a polymer host.

The new synthesis methods are truly scalable and can be used to produce large quantities of quantum dots, according to Paras N. Prasad, Ph.D., executive director of the UB Institute for Lasers, Photonics and Biophotonics, SUNY Distinguished Professor in the Department of Chemistry, and co-author on both papers.

"This fast-reaction chemistry will allow us to exploit the true potential of quantum dots, whether it be for delivery into human cells for imaging biological processes in unprecedented detail or for the development of far more efficient devices for solar conversion," he said.

On Aug. 17, the UB researchers reported in a paper in the Journal of the American Chemical Society what is believed to be the first successful demonstration of so-called III-V semiconductor quantum dots as luminescence probes for bioimaging that appear to be non-toxic. "Three-five," and other such classifications refer to the position on the periodic table of the elements that make up semiconductors.

Until now, only II-VI quantum dots have been produced for these applications. However, they are highly toxic to humans.

Composed of indium phosphide, the nanocrystals developed at UB demonstrate luminescence efficiencies comparable to other quantum dots, but they also emit light in longer wavelengths in the red region of the spectrum.

"This is a key advantage because red-light emission means these quantum dots will be capable of imaging processes deeper in the body than commercially available quantum dots, comprised of cadmium selenide, which emit mostly in the lower wavelength range," said Prasad.

Like those cadmium selenide quantum dots, the nanocrystals also exhibit two-photon excitation, absorbing two photons of light simultaneously, which is necessary for high-contrast imaging.

The UB group’s quantum dots are composed of an indium phosphide core surrounded by a zinc selenide shell to protect the surface. An organic group then is attached to this shell, as well as a targeting group, in this case, folic acid. Folate receptors are targeted commonly by drugs in diseases such as cancers of the breast, ovary, prostate and colon.

In their experiments, UB researchers showed that the quantum dot system recognized the folate receptor and then penetrated the cell membrane, Prasad explained.

The entire system is water dispersible, which is critical, Prasad said, if quantum dots are to be widely used for bioimaging.

The other scalable chemical fabrication procedure developed by the UB researchers allowed them to prepare quantum dot-polymer nanocomposites that absorb photons in the infrared region.

The work was described in the paper, "Efficient photoconductive devices at infrared wavelengths using quantum dot-polymer nanocomposites," published online Aug. 11 in Applied Physics Letters.

"Current solar cells act only in the green region, thus capturing only a fraction of the available light energy," Prasad said. "By contrast, we have shown that these lead selenide quantum dots can absorb in the infrared, allowing for the development of photovoltaic cells that can efficiently convert many times more light to usable energy than can current solar cells."

In addition to broadening the applications for solar energy in general, the UB research is likely to have applications to nighttime imaging systems used by the military that must absorb and emit light in the infrared.

"Because of the efficient photon harvesting ability of quantum dots, in the immediate future we will be able to incorporate a few different types of them simultaneously into a plastic host material so that an efficient and broad band active solar device is possible," said Yudhisthira Sahoo, Ph.D., research assistant professor in the UB Department of Chemistry and co-author on the APL paper.

Co-authors with Prasad on the paper in the Journal of the American Chemical Society are Dhruba J. Bharali, Ph.D., and Derrick W. Lucey, Ph.D., postdoctoral associates, and Haridas E. Pudavar, Ph.D., senior research scientist, all of the Department of Chemistry in the UB College of Arts and Sciences, and Harishankar Jayakumar, a graduate student in the Department of Electrical Engineering in the UB School of Engineering and Applied Sciences.

The research was supported by a Defense University Research Initiative in Nanotechnology (DURINT) grant from the Air Force Office of Scientific Research and by the John R. Oishei Foundation, as well as by UB’s New York State Center of Excellence in Bioinformatics and Life Sciences.

Co-authors with Prasad and Sahoo on the Applied Physics Letters paper are K. Roy Choudhury, graduate student in the Department of Physics in the UB College of Arts and Sciences, and T.Y. Ohulshanskyy, Ph.D., senior research scientist in the UB Department of Chemistry. The research was supported by the DURINT grant and by the National Science Foundation.

Research at UB’s Institute for Lasers, Photonics and Biophotonics has been supported by special New York State funding sponsored by State Sen. Mary Lou Rath.

The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York.

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Physics and Astronomy:

nachricht X-ray photoelectron spectroscopy under real ambient pressure conditions
28.06.2017 | National Institutes of Natural Sciences

nachricht New photoacoustic technique detects gases at parts-per-quadrillion level
28.06.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>