Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid One-Pot Syntheses Developed For Quantum Dots

12.09.2005


New processes have applications in bioimaging and solar conversion



Efficient and highly scalable new chemical synthesis methods developed at the University at Buffalo’s Institute for Lasers, Photonics and Biophotonics have the potential to revolutionize the production of quantum dots for bioimaging and photovoltaic applications.
A patent has been filed on the methods, which were described last month in papers in the Journal of the American Chemical Society and Applied Physics Letters.

Quantum dots are tiny semiconductor particles generally no larger than 10 nanometers that can be made to fluoresce in different colors depending on their size. Scientists are interested in quantum dots because they last much longer than conventional dyes used to tag molecules, which usually stop emitting light in seconds. Quantum dots also are of great interest for energy applications because they can produce electrons when they absorb light, making possible extremely efficient solar-energy devices.



Both fabrication methods developed by the UB researchers involve using a single container, or "pot," and take just a few hours to prepare.

The UB scientists report that one of their rapid-solution synthesis methods enabled them to prepare robust, water-dispersible quantum dots for bioimaging, while the other one allowed them to prepare organically soluble quantum dots ready to be sequestered into a polymer host.

The new synthesis methods are truly scalable and can be used to produce large quantities of quantum dots, according to Paras N. Prasad, Ph.D., executive director of the UB Institute for Lasers, Photonics and Biophotonics, SUNY Distinguished Professor in the Department of Chemistry, and co-author on both papers.

"This fast-reaction chemistry will allow us to exploit the true potential of quantum dots, whether it be for delivery into human cells for imaging biological processes in unprecedented detail or for the development of far more efficient devices for solar conversion," he said.

On Aug. 17, the UB researchers reported in a paper in the Journal of the American Chemical Society what is believed to be the first successful demonstration of so-called III-V semiconductor quantum dots as luminescence probes for bioimaging that appear to be non-toxic. "Three-five," and other such classifications refer to the position on the periodic table of the elements that make up semiconductors.

Until now, only II-VI quantum dots have been produced for these applications. However, they are highly toxic to humans.

Composed of indium phosphide, the nanocrystals developed at UB demonstrate luminescence efficiencies comparable to other quantum dots, but they also emit light in longer wavelengths in the red region of the spectrum.

"This is a key advantage because red-light emission means these quantum dots will be capable of imaging processes deeper in the body than commercially available quantum dots, comprised of cadmium selenide, which emit mostly in the lower wavelength range," said Prasad.

Like those cadmium selenide quantum dots, the nanocrystals also exhibit two-photon excitation, absorbing two photons of light simultaneously, which is necessary for high-contrast imaging.

The UB group’s quantum dots are composed of an indium phosphide core surrounded by a zinc selenide shell to protect the surface. An organic group then is attached to this shell, as well as a targeting group, in this case, folic acid. Folate receptors are targeted commonly by drugs in diseases such as cancers of the breast, ovary, prostate and colon.

In their experiments, UB researchers showed that the quantum dot system recognized the folate receptor and then penetrated the cell membrane, Prasad explained.

The entire system is water dispersible, which is critical, Prasad said, if quantum dots are to be widely used for bioimaging.

The other scalable chemical fabrication procedure developed by the UB researchers allowed them to prepare quantum dot-polymer nanocomposites that absorb photons in the infrared region.

The work was described in the paper, "Efficient photoconductive devices at infrared wavelengths using quantum dot-polymer nanocomposites," published online Aug. 11 in Applied Physics Letters.

"Current solar cells act only in the green region, thus capturing only a fraction of the available light energy," Prasad said. "By contrast, we have shown that these lead selenide quantum dots can absorb in the infrared, allowing for the development of photovoltaic cells that can efficiently convert many times more light to usable energy than can current solar cells."

In addition to broadening the applications for solar energy in general, the UB research is likely to have applications to nighttime imaging systems used by the military that must absorb and emit light in the infrared.

"Because of the efficient photon harvesting ability of quantum dots, in the immediate future we will be able to incorporate a few different types of them simultaneously into a plastic host material so that an efficient and broad band active solar device is possible," said Yudhisthira Sahoo, Ph.D., research assistant professor in the UB Department of Chemistry and co-author on the APL paper.

Co-authors with Prasad on the paper in the Journal of the American Chemical Society are Dhruba J. Bharali, Ph.D., and Derrick W. Lucey, Ph.D., postdoctoral associates, and Haridas E. Pudavar, Ph.D., senior research scientist, all of the Department of Chemistry in the UB College of Arts and Sciences, and Harishankar Jayakumar, a graduate student in the Department of Electrical Engineering in the UB School of Engineering and Applied Sciences.

The research was supported by a Defense University Research Initiative in Nanotechnology (DURINT) grant from the Air Force Office of Scientific Research and by the John R. Oishei Foundation, as well as by UB’s New York State Center of Excellence in Bioinformatics and Life Sciences.

Co-authors with Prasad and Sahoo on the Applied Physics Letters paper are K. Roy Choudhury, graduate student in the Department of Physics in the UB College of Arts and Sciences, and T.Y. Ohulshanskyy, Ph.D., senior research scientist in the UB Department of Chemistry. The research was supported by the DURINT grant and by the National Science Foundation.

Research at UB’s Institute for Lasers, Photonics and Biophotonics has been supported by special New York State funding sponsored by State Sen. Mary Lou Rath.

The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York.

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Physics and Astronomy:

nachricht Breaking the optical bandwidth record of stable pulsed lasers
24.01.2017 | Institut national de la recherche scientifique - INRS

nachricht European XFEL prepares for user operation: Researchers can hand in first proposals for experiments
24.01.2017 | European XFEL GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>