Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bose-Einstein condensate runs circles around magnetic trap

08.09.2005


Physicists at the University of California, Berkeley, have the universe’s coldest substance running in circles.



The UC Berkeley team has created a Bose-Einstein condensate of rubidium atoms and nudged it into a circular racetrack 2 millimeters across, creating a particle storage ring analogous to the accelerator storage rings of high energy physics. This ring, the first to contain a Bose-Einstein gas, is full of cold particles at a temperature of only one-millionth of a degree above absolute zero, traveling with energies a billion trillion times less than the particles in a high-energy storage ring.

The creation of a Bose-Einstein condensate (BEC) in a storage ring is reported in a paper accepted last week by the journal Physical Review Letters.


Though such slow-moving rubidium atoms would be useless for producing the exotic collision particles that are the bread and butter of high-energy accelerators, cold collisions of such atoms might reveal new quantum physics, said Dan Stamper-Kurn, assistant professor of physics at UC Berkeley and leader of the study.

"This experiment was a very fortunate accident," Stamper-Kurn said. "Cold collisions could give very precise information about the quantum states of these cold particles and the potential between the particles."

Apart from basic physics, however, the millimeter storage rings could be used as sensitive gyroscopes to detect minute changes in rotation. If a ring could be created with two BECs traveling in opposite directions, the quantum interference pattern the two matter waves create would shift with rotation, allowing exquisitely sensitive detection of rotation for use in research or navigation systems for satellites or aircraft. Similar sensitive quantum rotation detectors were proposed several years ago by other UC Berkeley physicists using superfluid helium flowing in a ring.

Other possible areas of study include quantized circulation, which is seen in superfluids and superconductors, and fluid analogs of general relativity.

Stamper-Kurn and Subhadeep Gupta, a Miller post-doctoral fellow at UC Berkeley, got the idea for a cold storage ring while building a more elaborate device that would create supercold atoms inside a mirror cavity to study the interactions between light and BECs. The first BEC was generated only 10 years ago, and Stamper-Kurn was part of the Massachusetts Institute of Technology team that first created this new form of matter. That team’s leader, Wolfgang Ketterle, shared the 2001 Nobel Prize in Physics.

As first proposed 80 years ago by Albert Einstein, based on previous work by Satyendra Nath Bose, if a gas of neutral atoms is cooled to a low enough temperature, all atoms of the gas would fall into the same quantum state. In other words, all of the million or billion atoms in the gas would end up in the same place at the same time, a weird quantum state dubbed a Bose-Einstein condensate.

The supercold atoms are created from a hot gas of neutral atoms that is laser cooled, collected in a magneto-optic trap, cooled further by evaporation, and then spun off into a magnetic trap for a few seconds of study before it warms up and dissipates. Like most such BEC refrigerators, the UC Berkeley device trapped about a million rubidium atoms in a microscopic nebula at the center of the magnetic trap.

Because of the UC Berkeley team’s particular design, the researchers found it easy to magnetically push the clump of atoms into a circular trajectory inside the magnetic trap. Over the course of several circuits of the track, the clump tended to spread out into a beam analogous to the particle beams in accelerators, the first of which was created by Ernest O. Lawrence at UC Berkeley in 1931.

"The atoms fill the ring in a matter of seconds," said Gupta. Since photographing the BEC destroys it, Gupta and his team repeated the experiment every two minutes until they had captured every stage in the evolution of the circling beam of atoms.

The atoms circled the racetrack at a speed of about 50 to 150 millimeters per second, which is equal to an energy of about one nano-electron volt (eV) per atom, or one billionth of an electron volt. High-energy particle accelerators routinely bump particles to energies of a few tera-electron volts, or a trillion eV - a billion trillion times more energetic than the cold rubidium atoms.

The atoms made as many as 20 laps in the two seconds before dissipating - enough time for Gupta and graduate students Kater Murch, Kevin Moore and Tom Purdy to study them.

Stamper-Kurn and his colleagues are pursuing further experiments with the storage ring while continuing to build the originally planned device, which will be used to study cavity quantum electrodynamics and possible applications in quantum computers.

The work was sponsored by the National Science Foundation, the Defense Advanced Research Projects Agency, the David and Lucile Packard Foundation and the University of California.

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu/news/media/releases/2005/09/06_bec.shtml
http://www.berkeley.edu

More articles from Physics and Astronomy:

nachricht A tale of two pulsars' tails: Plumes offer geometry lessons to astronomers
18.01.2017 | Penn State

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>