Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bose-Einstein condensate runs circles around magnetic trap

08.09.2005


Physicists at the University of California, Berkeley, have the universe’s coldest substance running in circles.



The UC Berkeley team has created a Bose-Einstein condensate of rubidium atoms and nudged it into a circular racetrack 2 millimeters across, creating a particle storage ring analogous to the accelerator storage rings of high energy physics. This ring, the first to contain a Bose-Einstein gas, is full of cold particles at a temperature of only one-millionth of a degree above absolute zero, traveling with energies a billion trillion times less than the particles in a high-energy storage ring.

The creation of a Bose-Einstein condensate (BEC) in a storage ring is reported in a paper accepted last week by the journal Physical Review Letters.


Though such slow-moving rubidium atoms would be useless for producing the exotic collision particles that are the bread and butter of high-energy accelerators, cold collisions of such atoms might reveal new quantum physics, said Dan Stamper-Kurn, assistant professor of physics at UC Berkeley and leader of the study.

"This experiment was a very fortunate accident," Stamper-Kurn said. "Cold collisions could give very precise information about the quantum states of these cold particles and the potential between the particles."

Apart from basic physics, however, the millimeter storage rings could be used as sensitive gyroscopes to detect minute changes in rotation. If a ring could be created with two BECs traveling in opposite directions, the quantum interference pattern the two matter waves create would shift with rotation, allowing exquisitely sensitive detection of rotation for use in research or navigation systems for satellites or aircraft. Similar sensitive quantum rotation detectors were proposed several years ago by other UC Berkeley physicists using superfluid helium flowing in a ring.

Other possible areas of study include quantized circulation, which is seen in superfluids and superconductors, and fluid analogs of general relativity.

Stamper-Kurn and Subhadeep Gupta, a Miller post-doctoral fellow at UC Berkeley, got the idea for a cold storage ring while building a more elaborate device that would create supercold atoms inside a mirror cavity to study the interactions between light and BECs. The first BEC was generated only 10 years ago, and Stamper-Kurn was part of the Massachusetts Institute of Technology team that first created this new form of matter. That team’s leader, Wolfgang Ketterle, shared the 2001 Nobel Prize in Physics.

As first proposed 80 years ago by Albert Einstein, based on previous work by Satyendra Nath Bose, if a gas of neutral atoms is cooled to a low enough temperature, all atoms of the gas would fall into the same quantum state. In other words, all of the million or billion atoms in the gas would end up in the same place at the same time, a weird quantum state dubbed a Bose-Einstein condensate.

The supercold atoms are created from a hot gas of neutral atoms that is laser cooled, collected in a magneto-optic trap, cooled further by evaporation, and then spun off into a magnetic trap for a few seconds of study before it warms up and dissipates. Like most such BEC refrigerators, the UC Berkeley device trapped about a million rubidium atoms in a microscopic nebula at the center of the magnetic trap.

Because of the UC Berkeley team’s particular design, the researchers found it easy to magnetically push the clump of atoms into a circular trajectory inside the magnetic trap. Over the course of several circuits of the track, the clump tended to spread out into a beam analogous to the particle beams in accelerators, the first of which was created by Ernest O. Lawrence at UC Berkeley in 1931.

"The atoms fill the ring in a matter of seconds," said Gupta. Since photographing the BEC destroys it, Gupta and his team repeated the experiment every two minutes until they had captured every stage in the evolution of the circling beam of atoms.

The atoms circled the racetrack at a speed of about 50 to 150 millimeters per second, which is equal to an energy of about one nano-electron volt (eV) per atom, or one billionth of an electron volt. High-energy particle accelerators routinely bump particles to energies of a few tera-electron volts, or a trillion eV - a billion trillion times more energetic than the cold rubidium atoms.

The atoms made as many as 20 laps in the two seconds before dissipating - enough time for Gupta and graduate students Kater Murch, Kevin Moore and Tom Purdy to study them.

Stamper-Kurn and his colleagues are pursuing further experiments with the storage ring while continuing to build the originally planned device, which will be used to study cavity quantum electrodynamics and possible applications in quantum computers.

The work was sponsored by the National Science Foundation, the Defense Advanced Research Projects Agency, the David and Lucile Packard Foundation and the University of California.

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu/news/media/releases/2005/09/06_bec.shtml
http://www.berkeley.edu

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>