Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotechnology confronts the ’bad hair day,’ tests new conditioner

08.09.2005


Ohio State University researchers have just completed the first comprehensive study of human hair on the nanometer level.



Special equipment enabled Bharat Bhushan and his colleagues to get an unprecedented close-up look at a rogue’s gallery of bad hair days – from chemically overprocessed locks to curls kinked up by humidity.

They used the techniques they developed to test a new high-tech hair conditioner.


Ultimately, the same techniques could be used to improve lipstick, nail polish and other beauty products, said Bhushan , Ohio Eminent Scholar and the Howard D. Winbigler Professor of mechanical engineering at Ohio State .

His specialty is nanotribology – the measurement of very small things, such as the friction between moving parts in microelectronics.

At first, hair seemed like an unlikely study subject, he said. Then he was invited to give a lecture to scientists at Procter & Gamble Co.

“It turns out that, for hair, friction is a major issue,” he said. Everyday activities like washing, drying, combing and brushing all cause hairs to rub against objects and against each other, he explained. Over time, the friction causes wear and tear – two processes that he and his colleagues are very familiar with, though they’re normally studying the wear between tiny motors and gears.

“We realized that beauty care was an emerging area for us and we should dive in,” Bhushan said.

He consulted for the company until P&G became an industrial partner in his laboratory, supplying him with samples of healthy and damaged hair. The Ohio State engineers examined hairs under an atomic force microscope (AFM), a tool that let them scratch the surface of hairs and probe inside the hair shaft with a very tiny needle. They published their results in the journal Ultramicroscopy, in a paper now available on the Web.

Among their findings: hair conditioners typically do not evenly cover the entire hair shaft.

P&G recently developed a new formula with additives to make the conditioner coat the hair evenly. In tests, Bhushan found that the new conditioner did coat hair more evenly.

Meanwhile, they examined healthy and damaged hairs under an electron microscope and an AFM, and simulated everyday wear and tear by rubbing hairs together and against polyurethane film to simulate skin.

“We didn’t know what we were looking for,” Bhushan said. “People know a lot about hair, but nobody has used an AFM to really study the structure of hair. So we already knew some things, but otherwise we didn’t know what to expect.”

Under the electron microscope, individual hairs looked like tree trunks, wrapped in layers of cuticle that resembled bark. In healthy hair, the cuticle edges lay flat against the hair shaft, but as hair gets damaged from chemical treatments or wear and tear, the cuticle edges begin to peel away from the shaft. That much was already known.

The researchers simulated what happens when damaged hair is exposed to humidity; the hairs plump up, and the cuticles stick out even further, leading to frizz. More frizz meant more friction – a fact confirmed by the AFM as researchers dragged a tiny needle across the surface.

Conditioner tends to stick to the cuticle edges, and can make the hair sticky on the nanometer scale. The researchers determined that by poking the hair shaft with the needle, and measuring the force required to pull it away.

They also probed inside hairs to measure the hardness of different layers of the shaft. Hair has a very complex structure, Bhushan said, and these first ultra-precise measurements of interior structure could one day lead to new products that treat hair from the inside.

In the future, he thinks his AFM techniques could be used to develop wear-resistant nail polishes and lipsticks.

Bhushan conducted this work with graduate student Carmen LaTorre and postdoctoral researchers Nianhuan Chen and Guohua Wei, all of Ohio State .

Bharat Bhushan | EurekAlert!
Further information:
http://www.osu.edu

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>