Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sandia conducts tests at Solar Tower to benefit future NASA space explorations

08.09.2005


Missions of interest include Saturn’s Titan


Solar power heats NASA space shield material. The tests apply heat equivalent to 1,500 suns to spacecraft shields. (Photo courtesy of Bill Congdon, Applied Research Associates, Inc.)



For the last two years, tests have been conducted at Sandia National Laboratories’ National Solar Thermal Test Facility to see how materials used for NASA’s future planetary exploration missions can withstand severe radiant heating.

The tests apply heat equivalent to 1,500 suns to spacecraft shields called Advanced Charring Ablators. The ablators protect spacecraft entering atmospheres at hypersonic speeds.


The test facility includes a 200-ft. "solar tower" surrounded by by a field of hundreds of sun-tracking mirror arrays called heliostats. The heliostats direct sunlight to the top of the tower where the test objects are affixed.

Under a work agreement, researchers at Sandia and Applied Research Associates, Inc. are conducting the tests for NASA Marshall’s In-Space Propulsion/Aerocapture Program. The R&D effort is tied to NASA’s plan for a future Titan mission with an orbiter and lander. Titan is Saturn’s largest moon.

The tests are led by Sandia solar tower expert Cheryl Ghanbari and Bill Congdon, project principal investigator for Applied Research Associates, Inc.

The tests are designed to simulate atmospheric heating of spacecraft that enter Titan, including low levels of convective heating combined with relatively high levels of thermal radiation.

The primary ablator candidates for the Titan mission are low-density silicones and phenolics, all under 20 pounds-per-cubic-foot density.

To date, more than 100 five-inch diameter samples have been tested in the solar environment inside the tower’s wind tunnel using a large quartz window.

Congdon says because of Titan’s relatively high radiation environment, some initial concerns had to be put to rest through testing. He says radiation might penetrate in-depth within the ablator, causing an increased "apparent" thermal conductivity and degrading insulation performance.

"Radiation could also generate high-pressure gasses within the ablator leading to spallation," Congdon says.

"We have been testing at the solar tower to see how the candidate Titan materials can withstand the expected range of heating conditions," Ghanbari says. "Titan has a nitrogen-rich atmosphere and nitrogen is used in the tests to similarly reduce ablator oxidation, while energy from the sun-tracking heliostats is focused on the samples."

Congdon says ground tests are necessary to understand and model surface ablation of the materials that will be severely heated during Titan entry.

During thermal radiation testing conducted in the solar tower, all of these concerns were addressed and found not to be a problem for the ablators of interest.

About the tests

The National Solar Thermal Test Facility consists of an eight-acre field of 220 solar-collection heliostats and a 200-ft.-tall tower that receives the collected energy at one of several test bays. A single heliostat includes 25 mirrors that are each four feet square. Total collection area of 220 heliostats is 88,000-square feet.

Because the heliostats are individually computer controlled, test radiation can be a shaped pulse as well as a square wave in terms of intensity vs. time, says Ghanbari.

Test samples are mounted high in the receiver tower, and the heliostats direct the sunlight upward to irradiate the sample surface. The samples are mounted in a water-cooled copper plate inside the wind tunnel with a quartz window that allows entry of the concentrated radiation.

Exposure is controlled by a fast-moving shutter and by pre-programmed heliostat movement. Radiation flux is calibrated before and after each test by a radiometer installed to occupy the same position as the test sample. Cooling effects from imposed surface flows are calibrated via a flat-plate slug calorimeter.

The materials are subjected to square pulse environments at flux levels of 100 and 150 W/cm2 for time periods that far exceed predicted flight durations for such high heating. They are also tested to "exact" flux vs. time environments (simulating actual flight conditions) using programmed heliostat focusing at the solar tower facility.

The material samples are installed in the tower’s wind tunnel and exposed to the solar beam at flux levels up to 150 W/cm2, which is approximately 1,500 times the intensity of the sun on earth on a clear day. During exposure, air blows past the sample at about mach 0.3 with a high-speed nitrogen sub-layer close to the sample surface.

Ghanbari says tests can be conducted only during about four hours midday bracketing solar noon. Haze, clouds, and high winds that affect the heliostats can degrade test conditions.

Current results

"All of the candidate materials showed no spallation and very good thermal performance to these imposed environments," Congdon says. Recently, five 12-inch by 12-inch panel samples were tested on top of the tower. Up to 20 additional 12-inch panels will be tested late in the summer followed by testing of 2-foot by 2-foot panels later in the year.

Additional tests for convective heating have been conducted on identical material samples at the Interaction Heating Facility (IHF) at NASA’s Ames Research Center.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Michael Padilla | EurekAlert!
Further information:
http://www.sandia.gov

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>