Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sandia conducts tests at Solar Tower to benefit future NASA space explorations

08.09.2005


Missions of interest include Saturn’s Titan


Solar power heats NASA space shield material. The tests apply heat equivalent to 1,500 suns to spacecraft shields. (Photo courtesy of Bill Congdon, Applied Research Associates, Inc.)



For the last two years, tests have been conducted at Sandia National Laboratories’ National Solar Thermal Test Facility to see how materials used for NASA’s future planetary exploration missions can withstand severe radiant heating.

The tests apply heat equivalent to 1,500 suns to spacecraft shields called Advanced Charring Ablators. The ablators protect spacecraft entering atmospheres at hypersonic speeds.


The test facility includes a 200-ft. "solar tower" surrounded by by a field of hundreds of sun-tracking mirror arrays called heliostats. The heliostats direct sunlight to the top of the tower where the test objects are affixed.

Under a work agreement, researchers at Sandia and Applied Research Associates, Inc. are conducting the tests for NASA Marshall’s In-Space Propulsion/Aerocapture Program. The R&D effort is tied to NASA’s plan for a future Titan mission with an orbiter and lander. Titan is Saturn’s largest moon.

The tests are led by Sandia solar tower expert Cheryl Ghanbari and Bill Congdon, project principal investigator for Applied Research Associates, Inc.

The tests are designed to simulate atmospheric heating of spacecraft that enter Titan, including low levels of convective heating combined with relatively high levels of thermal radiation.

The primary ablator candidates for the Titan mission are low-density silicones and phenolics, all under 20 pounds-per-cubic-foot density.

To date, more than 100 five-inch diameter samples have been tested in the solar environment inside the tower’s wind tunnel using a large quartz window.

Congdon says because of Titan’s relatively high radiation environment, some initial concerns had to be put to rest through testing. He says radiation might penetrate in-depth within the ablator, causing an increased "apparent" thermal conductivity and degrading insulation performance.

"Radiation could also generate high-pressure gasses within the ablator leading to spallation," Congdon says.

"We have been testing at the solar tower to see how the candidate Titan materials can withstand the expected range of heating conditions," Ghanbari says. "Titan has a nitrogen-rich atmosphere and nitrogen is used in the tests to similarly reduce ablator oxidation, while energy from the sun-tracking heliostats is focused on the samples."

Congdon says ground tests are necessary to understand and model surface ablation of the materials that will be severely heated during Titan entry.

During thermal radiation testing conducted in the solar tower, all of these concerns were addressed and found not to be a problem for the ablators of interest.

About the tests

The National Solar Thermal Test Facility consists of an eight-acre field of 220 solar-collection heliostats and a 200-ft.-tall tower that receives the collected energy at one of several test bays. A single heliostat includes 25 mirrors that are each four feet square. Total collection area of 220 heliostats is 88,000-square feet.

Because the heliostats are individually computer controlled, test radiation can be a shaped pulse as well as a square wave in terms of intensity vs. time, says Ghanbari.

Test samples are mounted high in the receiver tower, and the heliostats direct the sunlight upward to irradiate the sample surface. The samples are mounted in a water-cooled copper plate inside the wind tunnel with a quartz window that allows entry of the concentrated radiation.

Exposure is controlled by a fast-moving shutter and by pre-programmed heliostat movement. Radiation flux is calibrated before and after each test by a radiometer installed to occupy the same position as the test sample. Cooling effects from imposed surface flows are calibrated via a flat-plate slug calorimeter.

The materials are subjected to square pulse environments at flux levels of 100 and 150 W/cm2 for time periods that far exceed predicted flight durations for such high heating. They are also tested to "exact" flux vs. time environments (simulating actual flight conditions) using programmed heliostat focusing at the solar tower facility.

The material samples are installed in the tower’s wind tunnel and exposed to the solar beam at flux levels up to 150 W/cm2, which is approximately 1,500 times the intensity of the sun on earth on a clear day. During exposure, air blows past the sample at about mach 0.3 with a high-speed nitrogen sub-layer close to the sample surface.

Ghanbari says tests can be conducted only during about four hours midday bracketing solar noon. Haze, clouds, and high winds that affect the heliostats can degrade test conditions.

Current results

"All of the candidate materials showed no spallation and very good thermal performance to these imposed environments," Congdon says. Recently, five 12-inch by 12-inch panel samples were tested on top of the tower. Up to 20 additional 12-inch panels will be tested late in the summer followed by testing of 2-foot by 2-foot panels later in the year.

Additional tests for convective heating have been conducted on identical material samples at the Interaction Heating Facility (IHF) at NASA’s Ames Research Center.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Michael Padilla | EurekAlert!
Further information:
http://www.sandia.gov

More articles from Physics and Astronomy:

nachricht Space radiation won't stop NASA's human exploration
18.10.2017 | NASA/Johnson Space Center

nachricht Study shows how water could have flowed on 'cold and icy' ancient Mars
18.10.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>