Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop ’clever’ artificial hand

08.09.2005


Scientists have developed a new ultra-light limb that can mimic the movement in a real hand better than any currently available. This research was presented today at the Institute of Physics conference Sensors and their Applications XIII which took place at the University of Greenwich, Kent, UK.



Every year 200 people in the UK lose their hands. Common causes include motorbike accidents and industrial incidents. Currently available prosthetic hands are either simple mimics that look like a hand but don’t move or moving hands which have a simple single-motor grip.

The human hand has 27 bones and can make a huge number of complex movements and actions. Dr Paul Chappell, a medical physicist from the University of Southampton has designed a prototype hand that uses 6 sets of motors and gears so that each of the five fingers can move independently. This enables it to make movements and grip objects in the same way a real human hand does.


The new hand, called the ’Southampton Remedi-Hand’, can be connected to muscles in the arm via a small processing unit and is controlled by small contractions of the muscles which move the wrist.

Dr Chappell said: "With this hand you can clutch objects such as a ball, you can move the thumb out to one side and grip objects with the index finger in the way you do when opening a lock with a key, and you can wrap your fingers around an object in what we call the power grip – like the one you use when you hold a hammer or a microphone."

Dr Chappell and colleagues in the School of Electronics and Computer Science at the University of Southampton set out to try and build a hand which could mimic the movement and flexibility of the human hand and which was also very light. Heavy prosthetics can be extremely uncomfortable and cause injury to the area where it joins with the arm. The new hand they’ve developed is only 400g (even lighter that a real hand which weighs on average 500g).

They built the Remedi-Hand in three parts – the three middle fingers are very similar in size and movement so they made those identical. The pinky is a smaller version of the same. Each of these four fingers are made up of a motor attached to a gearbox attached to a carbon fibre finger. All of this is fitted to a carbon fibre palm. But the thumb was much more complicated and is the first artificially-made opposable thumb.

The human thumb can move in special ways the fingers can’t. It can rotate as well as flex and also move in a variety of different directions. It can also oppose (touch) each of the fingers in the hand to form a ’pinch’. To mimic this, the Remedi-Hand uses two motors – one to allow it to rotate and one to allow it to flex. "The real thumb can move in five types of way, we’ve managed to create a thumb that can mimic at least two of these which is a really exciting achievement. It’s a thumb that has really good flexibility and functionality" says Dr Chappell.

One of the key differences between mechanical, artificial, limbs is that they arn’t able to sense pressure or touch in the same way human limbs can. The next stage of Dr Chappell’s research is to integrate the latest sensors technology with the Remedi-Hand to create a ’clever’ hand which has better functionality and move like a real hand, but which can also sense how strongly it’s gripping an object or whether an object is slipping.

Dr Chappell and colleagues have already designed this ’clever’ hand and are about to start building a fully functioning prototype. It will have piezo-electric sensors in each of the five fingertips which will detect how much force is being exerted on the tip and translate this information into an electrical signal which will be fed to a small processor.

Dr Chappell said: "The aim is to create a hand with the sort of functionality a human hand has but also a sense of touch. This will let the hand know how tightly to grip an object like a coffee cup without dropping it, but not so tightly that it’s crushed. It’ll also have an integrated slip-sensor which will tell the hand if something is beginning to slip out of its grip so it can grip slightly harder. It’ll be quite a clever system."

David Reid | EurekAlert!
Further information:
http://www.iop.org

More articles from Physics and Astronomy:

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

nachricht NASA team finds noxious ice cloud on saturn's moon titan
19.10.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>