Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop ’clever’ artificial hand

08.09.2005


Scientists have developed a new ultra-light limb that can mimic the movement in a real hand better than any currently available. This research was presented today at the Institute of Physics conference Sensors and their Applications XIII which took place at the University of Greenwich, Kent, UK.



Every year 200 people in the UK lose their hands. Common causes include motorbike accidents and industrial incidents. Currently available prosthetic hands are either simple mimics that look like a hand but don’t move or moving hands which have a simple single-motor grip.

The human hand has 27 bones and can make a huge number of complex movements and actions. Dr Paul Chappell, a medical physicist from the University of Southampton has designed a prototype hand that uses 6 sets of motors and gears so that each of the five fingers can move independently. This enables it to make movements and grip objects in the same way a real human hand does.


The new hand, called the ’Southampton Remedi-Hand’, can be connected to muscles in the arm via a small processing unit and is controlled by small contractions of the muscles which move the wrist.

Dr Chappell said: "With this hand you can clutch objects such as a ball, you can move the thumb out to one side and grip objects with the index finger in the way you do when opening a lock with a key, and you can wrap your fingers around an object in what we call the power grip – like the one you use when you hold a hammer or a microphone."

Dr Chappell and colleagues in the School of Electronics and Computer Science at the University of Southampton set out to try and build a hand which could mimic the movement and flexibility of the human hand and which was also very light. Heavy prosthetics can be extremely uncomfortable and cause injury to the area where it joins with the arm. The new hand they’ve developed is only 400g (even lighter that a real hand which weighs on average 500g).

They built the Remedi-Hand in three parts – the three middle fingers are very similar in size and movement so they made those identical. The pinky is a smaller version of the same. Each of these four fingers are made up of a motor attached to a gearbox attached to a carbon fibre finger. All of this is fitted to a carbon fibre palm. But the thumb was much more complicated and is the first artificially-made opposable thumb.

The human thumb can move in special ways the fingers can’t. It can rotate as well as flex and also move in a variety of different directions. It can also oppose (touch) each of the fingers in the hand to form a ’pinch’. To mimic this, the Remedi-Hand uses two motors – one to allow it to rotate and one to allow it to flex. "The real thumb can move in five types of way, we’ve managed to create a thumb that can mimic at least two of these which is a really exciting achievement. It’s a thumb that has really good flexibility and functionality" says Dr Chappell.

One of the key differences between mechanical, artificial, limbs is that they arn’t able to sense pressure or touch in the same way human limbs can. The next stage of Dr Chappell’s research is to integrate the latest sensors technology with the Remedi-Hand to create a ’clever’ hand which has better functionality and move like a real hand, but which can also sense how strongly it’s gripping an object or whether an object is slipping.

Dr Chappell and colleagues have already designed this ’clever’ hand and are about to start building a fully functioning prototype. It will have piezo-electric sensors in each of the five fingertips which will detect how much force is being exerted on the tip and translate this information into an electrical signal which will be fed to a small processor.

Dr Chappell said: "The aim is to create a hand with the sort of functionality a human hand has but also a sense of touch. This will let the hand know how tightly to grip an object like a coffee cup without dropping it, but not so tightly that it’s crushed. It’ll also have an integrated slip-sensor which will tell the hand if something is beginning to slip out of its grip so it can grip slightly harder. It’ll be quite a clever system."

David Reid | EurekAlert!
Further information:
http://www.iop.org

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>