Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Field guide for confirming new earth-like planets described

08.09.2005


’Light breaks where no sun shines’


WUSTL researchers provide a field guide to exoplanets



Astronomers looking for earth-like planets in other solar systems — exoplanets — now have a new field guide thanks to earth and planetary scientists at Washington University in St. Louis.

Bruce Fegley, Ph.D., Washington University professor of earth and planetary sciences in Arts & Sciences, and Laura Schaefer, laboratory assistant, have used thermochemical equilibrium calculations to model the chemistry of silicate vapor and steam-rich atmospheres formed when earth-like planets are undergoing accretion . During the accretion process, with surface temperatures of several thousands degrees Kelvin (K), a magma ocean forms and vaporizes.


"What you have are elements that are typically found in rocks in a vapor atmosphere," said Schaefer. "At temperatures above 3,080 K, silicon monoxide gas is the major species in the atmosphere. At temperatures under 3,080 K, sodium gas is the major species. These are the indicators of an earth-like planet forming."

At such red-hot temperatures during the latter stages of the exoplanets’ formation, the signal should be distinct, said Fegley.

"It should be easily detectable because this silicon monoxide gas is easily observable," with different types of telescopes at infrared and radio wavelengths, Fegley said.

Schaefer presented the results at the annual meeting of the Division of Planetary Sciences of the American Astronomical Society, held Sept. 4-9 in Cambridge, England. The NASA Astrobiology Institute and Origins Program supported the work.

Forming a maser

Steve Charnley, a colleague at NASA AMES, suggested that some of the light emitted by SiO gas during the accretion process could form a maser — Microwave Amplification by Stimulation Emission of Radiation. Whereas a laser is comprised of photons in the ultraviolet or visible light spectrum, masers are energy packets in the microwave image.

Schaefer explains: "What you basically have is a clump of silicon monoxide gas, and some of it is excited into a state higher than ground level. You have some radiation coming in and it knocks against these silicon monoxide molecules and they drop down to a lower state.

"By doing that, it also emits another photon, so then you essentially have a propagating light. You end up with this really very high intensity illumination coming out of this gas."

According to Schaefer, the light from newly forming exoplanets should be possible to see.

"There are natural lasers in the solar system," she said. "We see them in the atmospheres of Mars and Venus, and also in some cometary atmospheres."

In recent months, astronomers have reported earth-like planets with six to seven times the mass of our earth. While they resemble a terrestrial planet like earth, there has not yet been a foolproof method of detection. The spectra of silicon monoxide and sodium gas would be the indication of a magma ocean on the astronomical object, and thus an indication a planet is forming, said Fegley.

The calculations that Fegley and Schaefer used also apply to our own earth. The researchers found that during later, cooler stages of accretion (below 1,500 K), the major gases in the steam-rich atmosphere are water, hydrogen, carbon dioxide, carbon and nitrogen, with the carbon converting to methane as the steam atmosphere cools.

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Physics and Astronomy:

nachricht Light-emitting bubbles captured in the wild
28.02.2017 | Georg-August-Universität Göttingen

nachricht Scientists reach back in time to discover some of the most power-packed galaxies
28.02.2017 | Clemson University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>