Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Method slashes quantum dot costs by 80 percent

08.09.2005


Rice scientists replace pricey solvents with cheap processing fluids



In an important advance toward the large-scale manufacture of fluorescent quantum dots, scientists at Rice University have developed a new method of replacing the pricey solvents used in quantum dot synthesis with cheaper oils that are commonplace at industrial chemical plants.

Rice’s study, which was conducted under the auspices of the Center for Biological and Environmental Nanotechnology (CBEN), is published online and slated to appear in the October issue of the journal Nanotechnology.


"CBEN started to undertake some exploratory work more than a year ago on the scale-up issues of quantum dot manufacture, but the solvents turned out to be so expensive that we just couldn’t afford to run more than a few large-reactor experiments," said the study’s lead author, Michael Wong, assistant professor of chemical and biomolecular engineering and of chemistry. "That was a great reality check, and it made us look at the problem of solvent cost sooner rather than later."

Quantum dots typically cost more than $2,000 per gram from commercial sources, and pricey solvents like octadecene, or ODE - the least expensive solvent used in quantum dot preparation today - account for about 90 percent costs of raw materials.

Heat-transfer fluids - stable, heat-resistant oils that are used to move heat between processing units at chemical plants - can cost up to seven times less than ODE. Replacing ODE with the heat-transfer fluid Dowtherm A, for example, reduces the overall materials cost of making quantum dots by about 80 percent.

Quantum dots are tiny crystals of semiconducting materials - cadmium selenide or CdSe is the most popular flavor - that measure just a few nanometers in diameter. Most of the commercial possibilities discussed for quantum dots - bioimaging, color displays, lasers, etc. - relate to their size-controlled fluorescence. For example, CdSe quantum dots have the ability to absorb high-energy photons of ultraviolet light and re-emit them as photons of visible light. They glow different colors, depending on the size, shifting from the red to the blue end of the spectrum as the crystals get smaller.

The reproducible synthesis of high-quality quantum dots became a reality in the early 1990s when researchers at MIT pioneered a new method of producing quantum dots with uniform sizes and well-defined optical signatures. The basic recipe for making quantum dots hasn’t changed much since it was first developed. A solvent is heated to almost 500 degrees Fahrenheit, and solutions containing cadmium and selenium compounds are injected. They chemically decompose and recombine as pure CdSe nanoparticles. Once these nanocrystals form, scientists can adjust their optical properties by growing them to precisely the size they want by adjusting the cooking time.

The solvent originally used for this process was trioctylphosphine oxide, or TOPO, which costs more than $150 per liter. Later, other scientists introduced a new recipe by replacing TOPO with a mixture of ODE and oleic acid.

Wong said the CBEN research team, which included CBEN Director Vicki Colvin, professor of chemistry, and Nikos Mantzaris, assistant professor of chemical and biomolecular engineering and of bioengineering, had some initial doubts about whether heat-transfer fluids could be substituted for ODE.

"They were cheap and they didn’t break down at high temperatures, but no one uses these compounds for chemical reactions," said Wong. In addition to finding that other quantum dot nanostructures could be made in heat- transfer fluids, the team concluded that any solvent could be used to replace ODE. Thanks to a mathematical modeling approach developed by Mantzaris, the team now has a method for predicting the particle size and growth behavior of quantum dots based on only three physical properties of a given solvent: viscosity, surface free energy and solubility of bulk cadmium selenide powder.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>