Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Method slashes quantum dot costs by 80 percent

08.09.2005


Rice scientists replace pricey solvents with cheap processing fluids



In an important advance toward the large-scale manufacture of fluorescent quantum dots, scientists at Rice University have developed a new method of replacing the pricey solvents used in quantum dot synthesis with cheaper oils that are commonplace at industrial chemical plants.

Rice’s study, which was conducted under the auspices of the Center for Biological and Environmental Nanotechnology (CBEN), is published online and slated to appear in the October issue of the journal Nanotechnology.


"CBEN started to undertake some exploratory work more than a year ago on the scale-up issues of quantum dot manufacture, but the solvents turned out to be so expensive that we just couldn’t afford to run more than a few large-reactor experiments," said the study’s lead author, Michael Wong, assistant professor of chemical and biomolecular engineering and of chemistry. "That was a great reality check, and it made us look at the problem of solvent cost sooner rather than later."

Quantum dots typically cost more than $2,000 per gram from commercial sources, and pricey solvents like octadecene, or ODE - the least expensive solvent used in quantum dot preparation today - account for about 90 percent costs of raw materials.

Heat-transfer fluids - stable, heat-resistant oils that are used to move heat between processing units at chemical plants - can cost up to seven times less than ODE. Replacing ODE with the heat-transfer fluid Dowtherm A, for example, reduces the overall materials cost of making quantum dots by about 80 percent.

Quantum dots are tiny crystals of semiconducting materials - cadmium selenide or CdSe is the most popular flavor - that measure just a few nanometers in diameter. Most of the commercial possibilities discussed for quantum dots - bioimaging, color displays, lasers, etc. - relate to their size-controlled fluorescence. For example, CdSe quantum dots have the ability to absorb high-energy photons of ultraviolet light and re-emit them as photons of visible light. They glow different colors, depending on the size, shifting from the red to the blue end of the spectrum as the crystals get smaller.

The reproducible synthesis of high-quality quantum dots became a reality in the early 1990s when researchers at MIT pioneered a new method of producing quantum dots with uniform sizes and well-defined optical signatures. The basic recipe for making quantum dots hasn’t changed much since it was first developed. A solvent is heated to almost 500 degrees Fahrenheit, and solutions containing cadmium and selenium compounds are injected. They chemically decompose and recombine as pure CdSe nanoparticles. Once these nanocrystals form, scientists can adjust their optical properties by growing them to precisely the size they want by adjusting the cooking time.

The solvent originally used for this process was trioctylphosphine oxide, or TOPO, which costs more than $150 per liter. Later, other scientists introduced a new recipe by replacing TOPO with a mixture of ODE and oleic acid.

Wong said the CBEN research team, which included CBEN Director Vicki Colvin, professor of chemistry, and Nikos Mantzaris, assistant professor of chemical and biomolecular engineering and of bioengineering, had some initial doubts about whether heat-transfer fluids could be substituted for ODE.

"They were cheap and they didn’t break down at high temperatures, but no one uses these compounds for chemical reactions," said Wong. In addition to finding that other quantum dot nanostructures could be made in heat- transfer fluids, the team concluded that any solvent could be used to replace ODE. Thanks to a mathematical modeling approach developed by Mantzaris, the team now has a method for predicting the particle size and growth behavior of quantum dots based on only three physical properties of a given solvent: viscosity, surface free energy and solubility of bulk cadmium selenide powder.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Physics and Astronomy:

nachricht One-way roads for spin currents
23.05.2018 | Singapore University of Technology and Design

nachricht Tunable diamond string may hold key to quantum memory
23.05.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>