Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Method slashes quantum dot costs by 80 percent

08.09.2005


Rice scientists replace pricey solvents with cheap processing fluids



In an important advance toward the large-scale manufacture of fluorescent quantum dots, scientists at Rice University have developed a new method of replacing the pricey solvents used in quantum dot synthesis with cheaper oils that are commonplace at industrial chemical plants.

Rice’s study, which was conducted under the auspices of the Center for Biological and Environmental Nanotechnology (CBEN), is published online and slated to appear in the October issue of the journal Nanotechnology.


"CBEN started to undertake some exploratory work more than a year ago on the scale-up issues of quantum dot manufacture, but the solvents turned out to be so expensive that we just couldn’t afford to run more than a few large-reactor experiments," said the study’s lead author, Michael Wong, assistant professor of chemical and biomolecular engineering and of chemistry. "That was a great reality check, and it made us look at the problem of solvent cost sooner rather than later."

Quantum dots typically cost more than $2,000 per gram from commercial sources, and pricey solvents like octadecene, or ODE - the least expensive solvent used in quantum dot preparation today - account for about 90 percent costs of raw materials.

Heat-transfer fluids - stable, heat-resistant oils that are used to move heat between processing units at chemical plants - can cost up to seven times less than ODE. Replacing ODE with the heat-transfer fluid Dowtherm A, for example, reduces the overall materials cost of making quantum dots by about 80 percent.

Quantum dots are tiny crystals of semiconducting materials - cadmium selenide or CdSe is the most popular flavor - that measure just a few nanometers in diameter. Most of the commercial possibilities discussed for quantum dots - bioimaging, color displays, lasers, etc. - relate to their size-controlled fluorescence. For example, CdSe quantum dots have the ability to absorb high-energy photons of ultraviolet light and re-emit them as photons of visible light. They glow different colors, depending on the size, shifting from the red to the blue end of the spectrum as the crystals get smaller.

The reproducible synthesis of high-quality quantum dots became a reality in the early 1990s when researchers at MIT pioneered a new method of producing quantum dots with uniform sizes and well-defined optical signatures. The basic recipe for making quantum dots hasn’t changed much since it was first developed. A solvent is heated to almost 500 degrees Fahrenheit, and solutions containing cadmium and selenium compounds are injected. They chemically decompose and recombine as pure CdSe nanoparticles. Once these nanocrystals form, scientists can adjust their optical properties by growing them to precisely the size they want by adjusting the cooking time.

The solvent originally used for this process was trioctylphosphine oxide, or TOPO, which costs more than $150 per liter. Later, other scientists introduced a new recipe by replacing TOPO with a mixture of ODE and oleic acid.

Wong said the CBEN research team, which included CBEN Director Vicki Colvin, professor of chemistry, and Nikos Mantzaris, assistant professor of chemical and biomolecular engineering and of bioengineering, had some initial doubts about whether heat-transfer fluids could be substituted for ODE.

"They were cheap and they didn’t break down at high temperatures, but no one uses these compounds for chemical reactions," said Wong. In addition to finding that other quantum dot nanostructures could be made in heat- transfer fluids, the team concluded that any solvent could be used to replace ODE. Thanks to a mathematical modeling approach developed by Mantzaris, the team now has a method for predicting the particle size and growth behavior of quantum dots based on only three physical properties of a given solvent: viscosity, surface free energy and solubility of bulk cadmium selenide powder.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Physics and Astronomy:

nachricht MEMS chips get metatlenses
21.02.2018 | American Institute of Physics

nachricht International team publishes roadmap to enhance radioresistance for space colonization
21.02.2018 | Biogerontology Research Foundation

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

The RWI/ISL-Container Throughput Index started off well in 2018

22.02.2018 | Business and Finance

FAU researchers demonstrate that an oxygen sensor in the body reduces inflammation

22.02.2018 | Health and Medicine

Histology in 3D: new staining method enables Nano-CT imaging of tissue samples

22.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>