Tiny computers go where no computer has gone before

A major breakthrough in the use of molecules as information processors is to be announced at this year’s BA Festival of Science in Dublin.


Nanotechnology experts are exploring the capabilities of molecules that act like conventional computers but can operate in tiny places where no silicon-based chip or semiconductor can go. Now, for the first time, they have used these molecules to perform logic operations and process information in spaces a few nanometres across.

This advance has been achieved by chemists at Queen’s University Belfast, with funding from the Engineering and Physical Sciences Research Council (EPSRC). Professor Amilra de Silva, Chair of Organic Chemistry at the university, says: “Computing isn’t just confined to semiconductors. Molecules have been processing information ever since life has been around on our planet. Harnessing this remarkable ability really does have the potential to make a big difference to people’s lives.”

Molecular information processors placed in nano-spaces can gather, process and supply valuable data on how chemistry and biology function at this tiny scale. Molecules can also be used as information processors in medical and other applications. Portable blood gas analysers incorporating early breakthroughs in this field are already in use, with total sales of relevant sensor components already reaching US$35 million.

When the right chemical inputs (e.g. sodium or potassium ions) and ultra-violet, blue, green or red light are applied, the artificial molecules used by the team respond by emitting light. This ’signal’ can be analysed using a fluorescence spectrometer or even the eye to provide data about the molecule’s environment. Different types of these information processors respond to different chemical inputs and different colours of light.

The underlying principle is based on photosynthesis – the process whereby plants use sunlight to produce food for themselves and for us – and is known as photo-induced electron transfer (PET). In PET, light causes electrons to move from one place to another. The speed of this process can be controlled by chemical means.

The Queen’s University Belfast team is now focusing on improving the complexity of the logic operations that can be performed. Professor de Silva will be discussing the team’s work and illustrating current capabilities at the BA Festival on 7th September.

Media Contact

Jane Reck EurekAlert!

More Information:

http://www.epsrc.ac.uk

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors