Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Star eats companion


ESA’s Integral space observatory, together with NASA’s Rossi X-ray Timing Explorer spacecraft, has found a fast-spinning pulsar in the process of devouring its companion.

This finding supports the theory that the fastest-spinning isolated pulsars get that fast by cannibalising a nearby star. Gas ripped from the companion fuels the pulsar’s acceleration. This is the sixth pulsar known in such an arrangement, and it represents a ’stepping stone’ in the evolution of slower-spinning binary pulsars into faster-spinning isolated pulsars.

"We’re getting to the point where we can look at any fast-spinning, isolated pulsar and say, ’That guy used to have a companion’," said Dr Maurizio Falanga, who led the Integral observations, at the Commissariat à l’Energie Atomique (CEA) in Saclay, France.

’Pulsars’ are rotating neutron stars, which are created in stellar explosions. They are the remnants of stars that were once at least eight times more massive than the Sun. These stars still contain about the mass of our Sun compactified into a sphere of only about 20 kilometres across.

This pulsar, called IGR J00291+5934, belongs to a category of ’X-ray millisecond pulsars’, which pulse with the X-ray light several hundred times a second, one of the fastest known. It has a period of 1.67 milliseconds which is much smaller that most other pulsars that rotate once every few seconds.

Neutron stars are born rapidly spinning in collapses of massive stars. They gradually slow down after a few hundred thousand years. Neutron stars in binary star systems, however, can reverse this trend and speed up with the help from the companion star.

For the first time ever, this speeding-up has been observed in the act. "We now have direct evidence for the star spinning faster whilst cannibalising its companion, something which no one had ever seen before for such a system," said Dr Lucien Kuiper from the Netherlands Institute for Space Research (SRON), in Utrecht.

A neutron star can remove gas from its companion star in a process called ’accretion’. The flow of gas onto the neutron star makes the star spin faster and faster. Both the flow of gas and its crashing upon the neutron star surface releases much energy in the form of X-ray and gamma radiation.

Neutron stars have such a strong gravitational field that light passing by the star changes its direction by almost 100 degrees (in comparison light passing by the Sun is deflected by an angle which is 200 thousands times smaller). "This ’gravitational bending’ allows us to see the back side of the star," points out Prof. Juri Poutanen from the University of Oulu, Finland.

"This object was about ten times more energetic than what is usually observed for similar sources," said Falanga. "Only some kind of monster emits at these energies, which corresponds to a temperature of almost a billion degrees."

From a previous Integral result, scientists deduced that because the neutron star has a strong magnetic field, charged particles from its companion are channeled along the magnetic field lines until they slam into the neutron star surface at one of its magnetic poles, forming ’hot spots’. The very high temperatures seen by Integral arise from this very hot plasma over the accretion spots.

IGR J00291+5934 was discovered by Integral during a routine scan of the sky on 2 December 2004, in the outer reaches of our Milky Way galaxy, when it suddenly flared. On the day after, scientists accurately clocked the neutron star with the Rossi X-ray Timing Explorer.

Rossi observations revealed that the companion is already a fraction the size of our Sun, perhaps as small as 40 Jupiter masses. The binary orbit is 2.5 hours long (as opposed to the year long Earth-Sun orbit). The full system is very tight; both stars are so close that they will fit into the radius of the Sun. These details support the theory that the two stars are close enough for accretion to take place and that the companion star is being cannibalised.

"Accretion is expected to cease after a billion of years or so," said Dr Duncan Galloway of the Massachusetts Institute of Technology, USA, responsible for the Rossi observations. "This Integral-Rossi discovery provides more evidence of how pulsars evolve from one phase to another - from an initially slowly spinning binary neutron star emitting high energies, to a rapidly spinning isolated pulsar emitting in radio wavelengths."

The discovery is the first of its kind for Integral (four of the first five rapidly spinning X-ray pulsars were discovered by Rossi). This bodes well in the combined search for these rare objects. Integrals’s sensitive detectors can identify relatively dim and distant sources and so, knowing where to look, Rossi can provide timing information through a dedicated observation extending over the entire two-week period of the typical outburst.

Chris Winkler | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>