Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New observations show dynamic particle clumps in Saturn’s A ring

06.09.2005


New observations from the Cassini spacecraft now at Saturn indicate the particles comprising one of its most prominent rings are trapped in ever-changing clusters of debris that are regularly torn apart and reassembled by gravitational forces from the planet.


The left image is a false-color view of Saturn’s A ring from the ultraviolet imaging spectrograph instrument aboard the Cassini spacecraft. The ring is bluest in the center, where the gravitational clumps are largest. The thickest black band in the ring is the Enke Gap, and the thin black band further to the right is the Keeler Gap. The right image is a computer simulation about 150 meters (490 feet) across, illustrating a clumpy region of particles in the A ring. The particles are moving counterclockwise, from bottom to top. Credit: NASA/JPL/University of Colorado



According to University of Colorado at Boulder Professor Larry Esposito of the Laboratory for Atmospheric and Space Physics, particle clusters in the outermost main ring, the A ring, range from the size of sedans to moving vans and are far too small to be photographed by the spacecraft cameras. The size and behavior of the clusters were deduced by a research team observing the flickering starlight as the ring passed in front of several stars in a process known as stellar occultation, he said.

This is the first time scientists have been able to measure the size, orientation and spacing of these particle clumps in Saturn’s rings, he said. Esposito is the science team leader for the Ultra Violet Imaging Spectrograph, or UVIS, a $12.5 million instrument designed and built at CU-Boulder that is riding on Cassini.


CU-Boulder planetary scientist Joshua Colwell, UVIS science team member, said researchers believe Saturn’s ring particles are made up of ice, dust and rock, and range in size from dust grains to mountains. The new observations of the particle clusters indicate the A ring is primarily empty space.

"The spacing between the clumps as determined by UVIS data is greater than the widths of the clumps themselves," Colwell said. "If we could get close enough to the rings, these clumps would appear as short, flattened strands of spiral arms with very few particles between them."

Colwell participated in a press briefing on new Cassini-Huygens observations at the 37th Annual Meeting of the Division for Planetary Sciences meeting held Sept. 4 to Sept. 9 in Cambridge, England.

Bound to each other by their own gravity, the clumps are periodically torn apart by the gravitational tides of Saturn, said Colwell. He likened the process to a handful of marbles placed in orbit around a beach ball. The marbles closest to the ball would orbit more quickly and drift from the pack before reorganizing themselves into new, orbiting clumps.

The individual clusters were largest near the middle of the ring and became smaller toward the edges of the ring, the team reported. The cluster cores range in size from two meters to 13 meters, or 7 feet to 43 feet. There are no indications yet that similar clumps exist in Saturn’s other rings, confirming predictions made by the team from computer simulations.

The UVIS team also detected a tenuous atmosphere on Saturn’s tiny moon Enceladus made of water vapor, said Esposito. The researchers detected no free-floating hydrogen or oxygen atoms, implying the water was recently released -- perhaps from a local fissure near the moon’s south pole -- and was escaping from its surface. Enceladus is only about 310 miles, or 500 kilometers, in diameter.

When combined with Cassini images and results from other spectrometers onboard the spacecraft, the new Enceladus observations indicate water and grains of ice are being spewed from the moon’s surface much in the manner of gaseous jets that have been observed erupting on the surface of comets, Esposito said. "The rate of water released is sufficient to provide the neutral oxygen discovered by UVIS around Saturn last year and to re-supply Saturn’s E ring."

In July, the UVIS team released new images from the mission depicting emissions near Saturn’s poles that resemble Earth’s northern lights. The image can be viewed at: http://www.colorado.edu/news/releases/2005/290.html.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini-Huygens mission for NASA’s Science Mission Directorate in Washington, D.C.

The Cassini orbiter was designed, developed and assembled at JPL. The ultraviolet imaging spectrograph was built, and the team is based, at the University of Colorado at Boulder.

For more information about the Cassini-Huygens mission visit http://saturn.jpl.nasa.gov. The ultraviolet imaging spectrograph team home page is at http://lasp.colorado.edu/cassini.

Larry Esposito | EurekAlert!
Further information:
http://lasp.colorado.edu/cassini
http://www.colorado.edu/news/releases/2005/290.html
http://saturn.jpl.nasa.gov

More articles from Physics and Astronomy:

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>