Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cassini reveals new details about Saturn’s rings

05.09.2005


Imaging scientists on Cassini have spent their summer vacations having more fun than kids at a carnival. Analyzing fantastic new results from Cassini’s first season of prime ring viewing, they are announcing today some of their unexpected findings on Saturn’s rings, including new structures in Saturn’s diffuse rings, clumps and knots in the F ring – some of which may be small moons – and a completely unexpected spiral ring around the planet in the vicinity of the F ring.



The findings are illustrated in processed images and movies being released today and found at http://ciclops.org, http://saturn.jpl.nasa.gov and http://www.nasa.gov/cassini.

First in the line of new discoveries is that parts of the D ring (Saturn’s innermost ring) have relocated and dimmed. Images show one of the major discrete ring structures in the D ring has changed in brightness and moved inward towards Saturn by as much as 200 kilometers (124 miles). A change over the 25 years since the NASA Voyager spacecraft flybys indicates very short evolutionary lifetimes in the D ring and is of great interest to ring scientists who have been hoping that Cassini would yield information about ring ages and lifetimes.


Dr. Matt Hedman, an imaging team associate at Cornell University, Ithaca, N.Y. said, "I think our Cassini images of the D ring are providing new information about the dynamics and lifetimes of ring particles in a new regime, very close to the planet."

The delicate G ring encircles the planet at about 170,000 kilometers (106,000 miles) from Saturn’s center. Cassini scientists have now found a discontinuous bright ring segment, or ’arc’, in this ring that bears at least a fleeting similarity to those imaged around Neptune in 1989 by NASA’s Voyager 2 spacecraft. Scientists think that long-lived arcs may be created or maintained by a nearby hidden moon. Another thought is that they formed as a result of a meteoroid impact.

Saturn’s tenuous D and G rings contain very little material, and the tiny, icy particles are the size of dust or smoke.

In examining the intriguing, knotted F ring, imaging team scientists have also discovered that the ghostly ringlets flanking the ring’s core are arranged into a spiral structure wound like a spring around the planet. Other spiraling structures seen in the main rings of Saturn, the density and bending waves, are initiated by the gravitational influence of an orbiting moon. Density and bending waves move across the rings because of the way that relatively massive ring particles exert a gravitational influence on each other and can all move together. In contrast, the spiral structure contains very little mass and appears to originate from material somehow episodically ejected from the core of the F ring and then sheared out due to the different orbital speeds followed by the constituent particles.

"It is a big surprise to see a spiral arm in Saturn’s rings," said Dr. Sebastien Charnoz, imaging team associate at the University of Paris. "It is very possible that the spiral is a consequence of moons crossing the F ring and spreading particles around, and may be telling us that the F ring might be a very unstable or even an ephemeral structure."

In the same region, scientists continue to spot small, clump-like features that may be loosely-bound clumps of material or tiny moonlets. Some of them have been sighted for the better part of a year. The solid-or-not nature of these mysterious F ring objects may be determined by repeated sightings: moons will persist, while clumps are expected to dissipate with time.

"We have long suspected that small moons were hiding among the F ring’s strands and producing some of the structures that we see," said Imaging Team Member Dr. Carl Murray of Queen Mary, University of London. "But now the problem is that we are detecting objects that may be either solid moons controlling the ring, or just loose clumps of particles within the ring, and it’s hard to tell the difference. It is like trying to distinguish sheep dogs from sheep in a very large flock."

A puzzling characteristic of at least two of the clumps/moons is that they ppear to cross the F ring periodically. One of them, an object that was discovered last year (S/2004 S6), may be responsible for forming the spiral.

"If the orbit that we have computed for S/2004 S6 is correct, then it must periodically plow through the core of the F ring," said Dr. Joseph Spitale, an imaging team associate at the Space Science Institute in Boulder, Colo. "The details of that interaction are not understood, but there probably are observable consequences, and maybe the F ring spiral is one of them."

These ring results were acquired over the summer as Cassini was in a prime ring-viewing period where the spacecraft’s orbit was raised to look down on the rings. The discoveries began almost immediately, with the discovery in May of a tiny moonlet orbiting within the narrow Keeler Gap in Saturn’s outer A ring.

These and other results were resented in a press briefing at the 37th Annual Meeting of the Division for Planetary Sciences meeting held this week in Cambridge, England.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory (JPL), a division of the California Institute of Technology in Pasadena, manages the Cassini-Huygens mission for NASA’s Science Mission Directorate, Washington. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging team consists of scientists from the U.S., England, France, and Germany. The imaging operations center and team leader (Dr. C. Porco) are based at the Space Science Institute in Boulder, Colo.

Preston Dyches | EurekAlert!
Further information:
http://www.nasa.gov/cassini
http://saturn.jpl.nasa.gov
http://www.ciclops.org

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>