Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant optical telescope in Africa comes online

02.09.2005


Five years after breaking ground on a South African mountaintop near the edge of the Kalahari desert, astronomers today (Sept. 1, 2005) released the first images captured by the Southern African Large Telescope (SALT), now the equal of the world’s largest optical telescope and a prized window to the night skies of the southern hemisphere.



With a 10- by 11-meter hexagonal segmented mirror and state-of-the-art scientific instrumentation, the new telescope was constructed by an international consortium of universities and government agencies. Partners include the National Research Foundation of South Africa, the University of Wisconsin-Madison’s College of Letters and Science, Poland’s Nicolas Copernicus Astronomical Centre and Rutgers University, among others.

The new $18 million observatory will provide unprecedented access to the astronomically rich skies of the southern hemisphere. Objects such as the Large and Small Magellanic Clouds, the galaxies nearest to our own Milky Way, will come into sharp view through the concerted focus of the 91 hexagonal mirror segments that comprise the SALT Telescope’s primary mirror array.


"We’re now players in the world of large telescopes," says Eric Wilcots, a UW-Madison professor of astronomy. "We’re in an age in which answering the big, fundamental questions requires access to large telescopes in good, dark skies. SALT is just such a telescope."

Access to the southern sky, says Wilcots, promises a bounty of observing: "The southern Milky Way is more spectacular and provides a richer treasure trove of objects than the northern Milky Way."

Moreover, studies of thousands of individual stars in the Magellanic Clouds are planned to trace the history of those nearby galaxies. The results of those studies, Wilcots explains, can be extrapolated to galaxies in general, providing a more refined life history of objects like our own Milky Way.

Other southern sky objects of interest, according to Kenneth Nordsieck, a UW-Madison astronomer now in South Africa to help with the SALT Telescope’s commissioning, include Eta Carina, a nearby massive star that has been racked by a series of enigmatic and spectacular explosions over the past century; Omega Centauri, a globular cluster of stars in the Milky Way that some astronomers believe may be the fossil remains of another galaxy consumed long ago by the Milky Way; and Centaurus A, a nearby galaxy that recently experienced an explosion at its core.

A critical advantage for the SALT Telescope, according to astronomers, is its location in one of the darkest regions of the world. With no nearby cities or towns, the observatory will be little affected by the light pollution that seriously hampers many observatories in the Northern Hemisphere.

Together with Rutgers University, another member of the SALT consortium, Wisconsin astronomers and engineers have constructed and are now integrating into the observatory the primary scientific instrument for the telescope, a device known as the Prime Focus Imaging Spectrograph. When in place six stories above the primary mirror array, the $5 million device will give the SALT Telescope specialized capabilities to capture and analyze starlight in unprecedented ways.

Spectrometers are designed to parse light into its constituent wavelengths. The spectra they obtain are revealing, providing astronomers with far more information than simple images. They can help show the chemical makeup of objects, depict motion, and some wavelengths of light enable astronomers to see through the obscuring clouds of dust and gas that permeate space.

One specialized capability of the Prime Focus Imaging Spectrograph, according to Nordsieck, is the ability to make observations in the near ultraviolet, the same kind of light that causes sunburn. "This is one of the few big instruments that will be good in the ultraviolet," says Nordsieck.

The images released today through the South African Astronomical Observatory, the SALT Observatory’s parent organization, were taken with a digital camera known as SALTICAM. They include stunning pictures of the Lagoon Nebula, a luminous stellar nursery; the globular star cluster 47 Tucanae; and NGC6744, a barred spiral galaxy that astronomers consider almost a twin of our own Milky Way. "The declaration of first light signifies that SALT has arrived on the astronomical scene," according to a statement issues by the South African Astronomical Observatory. Although a months-long period of commissioning and shakedown remains, "SALT is now in a very real sense an operational telescope."

A critical upcoming milestone will be the integration of the Wisconsin-built Prime Focus Imaging Spectrograph, envisioned as the workhorse instrument for the SALT Telescope. Capable of capturing high-resolution pictures, movies and the telltale spectra of objects such as stars, galaxies and comets, the device will be perched high above the light gathering primary mirror array at the heart of the new telescope.

Installation is expected in mid-September. "It is progressing in fits and starts, about the way one would expect with something of this complexity," says Nordsieck. "In the meantime, the telescope team has worked out a lot of kinks so there should be a relatively smooth commissioning."

The development of the SALT Observatory, says Wilcots, is "a beacon for Southern African science. It is meant to inspire a new generation of African scientists, which will be the lasting value of SALT to Southern Africa."

For UW-Madison, the telescope project represents a bridge from Madison to South Africa. "Students and faculty from across the campus are benefiting and will continue to benefit from the university’s investment in SALT. We now have a student exchange program with the University of Cape Town and we will be initiating an exchange with the University of the Western Cape in November," says Wilcots.

He emphasizes that the South Africans are making a statement with their investment in the giant telescope. "It is meant to showcase the capability of Southern African scientists and engineers -- and it has done that," Wilcots says. "Keep in mind that there are only a handful, perhaps as few as three, black South Africans with Ph.Ds in astronomy. While we have problems with an underrepresented minority in science, South Africa has an underrepresented majority."

Eric Wilcots | EurekAlert!
Further information:
http://www.astro.wisc.edu

More articles from Physics and Astronomy:

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

nachricht Light rays from a supernova bent by the curvature of space-time around a galaxy
21.04.2017 | Stockholm University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>