Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

XMM-Newton probes formation of galaxy clusters

01.09.2005


ESA’s X-ray observatory, XMM-Newton, has for the first time allowed scientists to study in detail the formation history of galaxy clusters, not only with single arbitrarily selected objects, but with a complete representative sample of clusters.


XMM-Newton image of galaxy cluster RXCJ0658.5-5556


XMM-Newton image of galaxy cluster RXCJ2337.6+0016



Knowing how these massive objects formed is a key to understanding the past and future of the Universe. Scientists currently base their well-founded picture of cosmic evolution on a model of structure formation where small structures form first and these then make up larger astronomical objects.

Galaxy clusters are the largest and most recently formed objects in the known Universe, and they have many properties that make them great astrophysical ‘laboratories’. For example, they are important witnesses of the structure formation process and important ‘probes’ to test cosmological models.


To successfully test such cosmological models, we must have a good observational understanding of the dynamical structure of the individual galaxy clusters from representative cluster samples.

For example, we need to know how many clusters are well evolved. We also need to know which clusters have experienced a recent substantial gravitational accretion of mass, and which clusters are in a stage of collision and merging. In addition, a precise cluster mass measurement, performed with the same XMM-Newton data, is also a necessary prerequisite for quantitative cosmological studies.

The most easily visible part of galaxy clusters, i.e. the stars in all the galaxies, make up only a small fraction of the total of what makes up the cluster. Most of the observable matter of the cluster is composed of a hot gas (10-100 million degrees) trapped by the gravitational potential force of the cluster. This gas is completely invisible to human eyes, but because of its temperature, it is visible by its X-ray emission.

This is where XMM-Newton comes in. With its unprecedented photon-collecting power and capability of spatially resolved spectroscopy, XMM-Newton has enabled scientists to perform these studies so effectively that not only single objects, but also whole representative samples can be studied routinely.

XMM-Newton produces a combination of X-ray images (in different x-ray energy bands, which can be thought of as different X-ray ‘colours’), and makes spectroscopic measurements of different regions in the cluster.

While the image brightness gives information on the gas density in the cluster, the colours and spectra provide an indication of the cluster’s internal gas temperature. From the temperature and density distribution, the physically very important parameters of pressure and ‘entropy’ can be also derived. Entropy is a measure of the heating and cooling history of a physical system.

The accompanying three images illustrate the use of entropy distribution in the ‘X-ray luminous’ gas as a way of identifying various physical processes. Entropy has the unique property of decreasing with radiative cooling, increasing due to heating processes, but staying constant with compression or expansion under energy conservation.

The latter ensures that a ‘fossil record’ of any heating or cooling is kept even if the gas subsequently changes its pressure adiabatically (under energy conservation).

These examples are drawn from the REFLEX-DXL sample, a statistically complete sample of some of the most X-ray luminous clusters found in the ROSAT All-Sky Survey. ROSAT was an X-ray observatory developed in the 1990s in co-operation between Germany, USA and UK.

The images provide views of the entropy distribution coded in colour where the values increase from blue, green, yellow to red and white.

Norbert Schartel | alfa
Further information:
http://www.esa.int/esaSC/SEMDW5A5QCE_index_0.html

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>