Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

XMM-Newton probes formation of galaxy clusters

01.09.2005


ESA’s X-ray observatory, XMM-Newton, has for the first time allowed scientists to study in detail the formation history of galaxy clusters, not only with single arbitrarily selected objects, but with a complete representative sample of clusters.


XMM-Newton image of galaxy cluster RXCJ0658.5-5556


XMM-Newton image of galaxy cluster RXCJ2337.6+0016



Knowing how these massive objects formed is a key to understanding the past and future of the Universe. Scientists currently base their well-founded picture of cosmic evolution on a model of structure formation where small structures form first and these then make up larger astronomical objects.

Galaxy clusters are the largest and most recently formed objects in the known Universe, and they have many properties that make them great astrophysical ‘laboratories’. For example, they are important witnesses of the structure formation process and important ‘probes’ to test cosmological models.


To successfully test such cosmological models, we must have a good observational understanding of the dynamical structure of the individual galaxy clusters from representative cluster samples.

For example, we need to know how many clusters are well evolved. We also need to know which clusters have experienced a recent substantial gravitational accretion of mass, and which clusters are in a stage of collision and merging. In addition, a precise cluster mass measurement, performed with the same XMM-Newton data, is also a necessary prerequisite for quantitative cosmological studies.

The most easily visible part of galaxy clusters, i.e. the stars in all the galaxies, make up only a small fraction of the total of what makes up the cluster. Most of the observable matter of the cluster is composed of a hot gas (10-100 million degrees) trapped by the gravitational potential force of the cluster. This gas is completely invisible to human eyes, but because of its temperature, it is visible by its X-ray emission.

This is where XMM-Newton comes in. With its unprecedented photon-collecting power and capability of spatially resolved spectroscopy, XMM-Newton has enabled scientists to perform these studies so effectively that not only single objects, but also whole representative samples can be studied routinely.

XMM-Newton produces a combination of X-ray images (in different x-ray energy bands, which can be thought of as different X-ray ‘colours’), and makes spectroscopic measurements of different regions in the cluster.

While the image brightness gives information on the gas density in the cluster, the colours and spectra provide an indication of the cluster’s internal gas temperature. From the temperature and density distribution, the physically very important parameters of pressure and ‘entropy’ can be also derived. Entropy is a measure of the heating and cooling history of a physical system.

The accompanying three images illustrate the use of entropy distribution in the ‘X-ray luminous’ gas as a way of identifying various physical processes. Entropy has the unique property of decreasing with radiative cooling, increasing due to heating processes, but staying constant with compression or expansion under energy conservation.

The latter ensures that a ‘fossil record’ of any heating or cooling is kept even if the gas subsequently changes its pressure adiabatically (under energy conservation).

These examples are drawn from the REFLEX-DXL sample, a statistically complete sample of some of the most X-ray luminous clusters found in the ROSAT All-Sky Survey. ROSAT was an X-ray observatory developed in the 1990s in co-operation between Germany, USA and UK.

The images provide views of the entropy distribution coded in colour where the values increase from blue, green, yellow to red and white.

Norbert Schartel | alfa
Further information:
http://www.esa.int/esaSC/SEMDW5A5QCE_index_0.html

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>