Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cassini findings suggest complex story of venting at the south pole of Enceladus

31.08.2005


Evidence is mounting that the atmosphere of Enceladus, first detected by the Cassini Magnetometer instrument, is the result of venting from ground fractures close to the moon’s south pole. New findings from the close flyby of Enceladus by Cassini this past July add to the emerging picture of a small icy body, unusual in its past and present level of activity, and very different from all other icy Saturnian moons.



Within a minute of closest approach to Enceladus on July 14th, 2005, two instruments aboard the Cassini spacecraft detected material coming from the surface of the moon. The Ion and Neutral Mass Spectrometer (INMS) measured a large peak in the abundance of water vapor at approximately 35 seconds before closest approach to Enceladus, as it flew over the south polar region at an altitude of 270 kilometers (168 miles).

The High Rate Detector (HRD) of the Cosmic Dust Analyzer (CDA) observed a peak in the number of fine, powder-sized icy particles coming from the surface approximately a minute before reaching closest approach at an altitude of 460 kilometers (286 miles).


The character of these detections is very similar to the venting of vapor and fine, icy particles from the surfaces of comets when they are warmed by sunlight as they near the Sun. On Enceladus, however, it is believed that internal heat, possibly from tidal forces, is responsible for the activity. The close but different occurrences of the two detections are yielding important clues to the location of the vents and even the venting process.

“And so the plot thickens,” said Dr. Carolyn Porco, Imaging Team leader at the Space Science Institute in Boulder, Colo. “Enceladus is surprisingly warm, internally fractured and active, and we’re not sure how it comes to be that its South pole is the warmest, most active place. The fact that Enceladus is so alive, and Mimas, the moon next door and roughly the same size, is so dead, is really testing our understanding of the internal workings of planetary satellites. But we’re not complaining. We like it this way.”

Acting on the timing information, the Cassini imaging team examined images of Enceladus acquired during the same July flyby, tracing the ground track of the spacecraft across the south pole during the encounter. They noted that the maximum water vapor abundance detected by INMS occurred when Cassini was directly over one of the mid-latitude tectonic gashes that circumscribe the south polar region, suggesting at first the sub-spacecraft fracture as being the source of the vapor detected by INMS.

However, the mid-latitude fracture system is not presently a source of anomalous heat on Enceladus. Previously reported, combined results from the Composite Infrared Spectrometer (CIRS) and the Imaging Science instrument (ISS) instead indicated that an array of narrow linear cracks straddling the south pole, called ‘tiger stripes’, is the site of at least some of greatest concentrations of anomalous heat at the surface, and that mid-latitude regions are normal and cooler.

Furthermore, analysis of the timings of the INMS and CDA observations seems to indicate that the vapor and fine material are originating from the hot polar cap region, some distance away from the spacecraft’s flight path, and that the two processes – production of water vapor and ejection of fine material – are connected, as they are in a comet.

Recent numerical simulations by members of the CDA team at the University of Potsdam, Germany, aimed at reproducing the timing of the CDA observations, have shown that the majority of the icy grains originate from a source at the moon’s south pole that is distributed along the surface, like the cracks seen in the images, and not from globally distributed impacts by Saturn-system dust particles as had been previously assumed. If this is the case, then the sharpness of the peak detected in the water vapor abundances by INMS is better explained by passage of the spacecraft through the edge of a cloud of vapor that hovers over the south pole, and not through a sub-spacecraft source as suggested by the images.

The CDA analyses also shed light on the origin of the broad, diffuse E ring through which Enceladus orbits. “This new finding might explain why Enceladus is so efficient in replenishing the E ring with fresh particles,” said Dr. Frank Spahn of the University of Potsdam.

To arrive at a more complete and accurate picture of the surface environment on Enceladus will require scientists from the various Cassini instrument teams to combine their findings… something that will happen in the days ahead.

“The exploration of the mysteries of Enceladus with Cassini’s combined set of instrumentation,” said Dr. Hunter Waite, team leader of the INMS investigation at the University of Michigan in Ann Arbor, “clearly demonstrates the virtue of exploring a system as complex as Saturn’s using a very well-equipped flagship like Cassini.”

Cassini will encounter Enceladus again at very close range in March, 2008.

Preston Dyches | EurekAlert!
Further information:
http://www.ciclops.org

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>