Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Finding a Way to Test for Dark Energy


What is the mysterious dark energy that’s causing the expansion of the universe to accelerate? Is it some form of Einstein’s famous cosmological constant, or is it an exotic repulsive force, dubbed "quintessence," that could make up as much as three-quarters of the cosmos? Scientists from Lawrence Berkeley National Laboratory (Berkeley Lab) and Dartmouth College believe there is a way to find out.

The SuperNova/Acceleration Probe, SNAP, is a satellite designed to study dark energy through the discovery and precision measurement of thousands of distant supernovae.

Today’s universe is expanding at an accelerating rate because dark energy counteracts the force of gravity. In the early universe matter was closer together, and gravity still slowed its expansion.

In a paper to be published in Physical Review Letters, physicists Eric Linder of Berkeley Lab and Robert Caldwell of Dartmouth show that physics models of dark energy can be separated into distinct scenarios, which could be used to rule out Einstein’s cosmological constant and explain the nature of dark energy. What’s more, scientists should be able to determine which of these scenarios is correct with the experiments being planned for the Joint Dark Energy Mission (JDEM) that has been proposed by NASA and the U.S. Department of Energy.

"Scientists have been arguing the question ’how precisely do we need to measure dark energy in order to know what it is?’" says Linder. "What we have done in our paper is suggest precision limits for the measurements. Fortunately, these limits should be within the range of the JDEM experiments."

Linder and Caldwell are both members of the DOE-NASA science definition team for JDEM, which has the responsibility for drawing up the mission’s scientific requirements. Linder is the leader of the theory group for SNAP — the SuperNova/Acceleration Probe, one of the proposed vehicles for carrying out the JDEM mission. Caldwell, a professor of physics and astronomy at Dartmouth, is one of the originators of the quintessence concept.

In their paper in Physical Review Letters Linder and Caldwell describe two scenarios, one they call "thawing" and one they call "freezing," which point toward distinctly different fates for our permanently expanding universe. Under the thawing scenario, the acceleration of the expansion will gradually decrease and eventually come to a stop, like a car when the driver eases up on the gas pedal. Expansion may continue more slowly, or the universe may even recollapse. Under the freezing scenario, acceleration continues indefinitely, like a car with the gas pedal pushed to the floor. The universe would become increasingly diffuse, until eventually our galaxy would find itself alone in space.

Either of these two scenarios rules out Einstein’s cosmological constant. In their paper Linder and Caldwell show, for the first time, how to cleanly separate Einstein’s idea from other possibilities. Under any scenario, however, dark energy is a force that must be reckoned with.

Says Linder, "Because dark energy makes up about 70 percent of the content of the universe, it dominates over the matter content. That means dark energy will govern expansion and, ultimately, determine the fate of the universe."

In 1998, two research groups rocked the field of cosmology with their independent announcements that the expansion of the universe is accelerating. By measuring the redshift of light from Type Ia supernovae, deep-space stars that explode with a characteristic energy, teams from the Supernova Cosmology Project headquartered at Berkeley Lab and the High-Z Supernova Search Team centered in Australia determined that the expansion of the universe is actually accelerating, not decelerating. The unknown force behind this accelerated expansion was given the name "dark energy."

Prior to the discovery of dark energy, conventional scientific wisdom held that the Big Bang had resulted in an expansion of the universe that would gradually be slowed down by gravity. If the matter content in the universe provided enough gravity, one day the expansion would stop altogether and the universe would fall back on itself in a Big Crunch. If the gravity from matter was insufficient to completely stop the expansion, the universe would continue floating apart forever.

"From the announcements in 1998 and subsequent measurements, we now know that the accelerated expansion of the universe did not start until sometime in the last 10 billion years," Caldwell says.

Cosmologists are now scrambling to determine what exactly dark energy is. In 1917 Einstein amended his General Theory of Relativity with a cosmological constant, which, if the value was right, would allow the universe to exist in a perfectly balanced, static state. Although history’s most famous physicist would later call the addition of this constant his "greatest blunder," the discovery of dark energy has revived the idea.

"The cosmological constant was a vacuum energy (the energy of empty space) that kept gravity from pulling the universe in on itself," says Linder. "A problem with the cosmological constant is that it is constant, with the same energy density, pressure, and equation of state over time. Dark energy, however, had to be negligible in the universe’s earliest stages; otherwise the galaxies and all their stars would never have formed."

For Einstein’s cosmological constant to result in the universe we see today, the energy scale would have to be many orders of magnitude smaller than anything else in the universe. While this may be possible, Linder says, it does not seem likely. Enter the concept of "quintessence," named after the fifth element of the ancient Greeks, in addition to air, earth, fire, and water; they believed it to be the force that held the moon and stars in place.

"Quintessence is a dynamic, time-evolving, and spatially dependent form of energy with negative pressure sufficient to drive the accelerating expansion," says Caldwell. "Whereas the cosmological constant is a very specific form of energy — vacuum energy — quintessence encompasses a wide class of possibilities."

To limit the possibilities for quintessence and provide firm targets for basic tests that would also confirm its candidacy as the source of dark energy, Linder and Caldwell used a scalar field as their model. A scalar field possesses a measure of value but not direction for all points in space. With this approach, the authors were able to show quintessence as a scalar field relaxing its potential energy down to a minimum value. Think of a set of springs under tension and exerting a negative pressure that counteracts the positive pressure of gravity.

"A quintessence scalar field is like a field of springs covering every point in space, with each spring stretched to a different length," Linder said. "For Einstein’s cosmological constant, each spring would be the same length and motionless."

Under their thawing scenario, the potential energy of the quintessence field was "frozen" in place until the decreasing material density of an expanding universe gradually released it. In the freezing scenario, the quintessence field has been rolling towards its minimum potential since the universe underwent inflation, but as it comes to dominate the universe it gradually becomes a constant value.

The SNAP proposal is in research and development by physicists, astronomers, and engineers at Berkeley Lab, in collaboration with colleagues from the University of California at Berkeley and many other institutions; it calls for a three-mirror, 2-meter reflecting telescope in deep-space orbit that would be used to find and measure thousands of Type Ia supernovae each year. These measurements should provide enough information to clearly point towards either the thawing or freezing scenario — or to something else entirely new and unknown.

Says Linder, "If the results from measurements such as those that could be made with SNAP lie outside the thawing or freezing scenarios, then we may have to look beyond quintessence, perhaps to even more exotic physics, such as a modification of Einstein’s General Theory of Relativity to explain dark energy."

"The limits of quintessence," by R.R. Caldwell and Eric V. Linder, is now online at and will appear in a forthcoming edition of Physical Review Letters.

Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California.

Lynn Yarris | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>