Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Operando’ methods for understanding catalysis in hydrogen storage

30.08.2005


As researchers at Pacifi c Northwest National Laboratory investigated the hydrogen storage capabilities of amine borane compounds, they knew that a rhodium catalyst readily releases hydrogen from the compound at room temperature. But they weren’t sure how it worked. Aside from the scientific quest for knowledge, understanding the mechanism at work with rhodium may help with the development of a more cost-effective catalyst to enable hydrogen storage.



PNNL scientists used a type of x-ray spectroscopy available at the Advanced Photon Source synchrotron at Argonne National Laboratory to look at the reaction as it was occurring. They found the active site of the catalyst centered around a cluster of about four rhodium atoms. They also found that the catalyst structure during the reaction was different than the structure before and after the reaction, thus highlighting the importance of measuring the catalyst structure during the reaction conditions.

By combining these results with subsequent in situ nuclear magnetic resonance and infrared spectroscopy, researchers were able to "see" what happens to the boron compound as the hydrogen is released. The results show the mechanism of how the amine borane compound binds to the active catalyst and then how the hydrogen molecule is released as a gas.


The research demonstrates the importance of "operando" methods - or observation of the fundamental molecular level measurements of the catalyst, the reactants and the products - under practical conditions. The PNNL group is using this approach to investigate other chemical reactions where little is known about the key catalytic processes.

Susan Bauer | EurekAlert!
Further information:
http://www.pnl.gov

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>