Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Locationg crucial atoms in superconductors

29.08.2005


With an advanced imaging technique and a savvy strategy, researchers at Cornell University’s Laboratory of Atomic and Solid State Physics (LAASP) have shown how adding charge-carrying atoms like oxygen to a superconductor can increase the material’s ability to conduct electricity overall and -- paradoxically -- to decrease it in localized spots.



The discovery, published in the Aug. 12 issue of Science, could lead to the eventual development of more effective superconductors.

The scientists, led by Cornell professor of physics J.C. Séamus Davis, used a specialized scanning tunneling microscope (STM) in the basement of Cornell’s Clark Hall for the research. They identified for the first time the locations of individual oxygen atoms within a particular superconductor’s molecular structure and used that information to examine how the atoms affect current flow in their immediate vicinity. It’s a small but vital step, they say, toward understanding how superconductors work.


Superconductors are materials that conduct electricity with virtually no resistance. The materials, in this case copper-based compounds (cuprates) doped with charge-carrying atoms like oxygen and cooled to extremely low temperatures, are widely used in fields from medicine to the military. But the physics behind them is still not well understood, making the ultimate goal of creating a room-temperature superconductor elusive.

Researchers have long suspected that dopant atoms -- crucial for conductivity because they attract electrons and leave the positively charged gaps that allow current to flow without resistance -- are actually counterproductive because they create electronic disorder at the atomic level. But until now, no one had been able to look closely enough at the atomic structure to confirm the correlation.

The researchers at Cornell tackled the problem by preparing samples of a cuprate superconductor doped with different concentrations of oxygen atoms. Using the STM, which can measure current in areas less than a nanometer wide -- the width of three silicon atoms -- they mapped the materials according to how well or poorly current flowed in each point on the plane. The locations of the oxygen atoms, they found, correlated with the areas of energy disorder they had already identified.

"Now we can put the dopant atoms into the image and ask, are they correlated with the electronic disorder directly?" said Davis. "When the dopants are far away, electron waves are homogeneous." When the dopant atoms are near the conducting plane, though, the waves become drastically heterogeneous, causing the superconductivity to break down.

Think of the compound’s electrons as dancers moving together in a carefully choreographed production, Davis said.

"Superconductivity is made by pairing two electrons. It’s like a dance -- not a waltz, but a distributed dance like a contra dance," Davis said. "If you put stones in the middle of the dance floor you disturb the pattern. And once you’ve destroyed all the pairs, you’ve destroyed the superconductivity."

But (and here the contra dance analogy breaks down a little) the stones -- in this case, the dopant atoms -- are prerequisites for the dance. So taking them out isn’t an option.

"These atoms have to be working in two different ways -- one way on average and another way locally," said Kyle McElroy, a postdoctoral researcher at the University of California-Berkeley and co-author of the paper. "One of the big questions is why different cuprate families superconduct at different temperatures. There’s a spread of four to five times the transition temperature. Why do these transition temperatures change so much, and what is governing that?"

Experts predict that the worldwide market for superconductors will reach $5 billion by the year 2010 from about half that in 2000 -- if growth continues linearly. But if scientists can learn to make materials that superconduct at higher temperatures, the market could skyrocket.

"This kind of information is a necessary step toward understanding first the mechanism of high temperature superconductivity and, next, how to raise the transition temperatures," said James Slezak, co-author of the paper and a graduate student in physics at Cornell.

The paper’s other authors include D.H. Lee of the University of California-Berkeley, H. Eisaki of the National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan, and S. Uchida of the University of Tokyo.

Blaine P. Friedlander | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Physics and Astronomy:

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>