Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Locationg crucial atoms in superconductors

29.08.2005


With an advanced imaging technique and a savvy strategy, researchers at Cornell University’s Laboratory of Atomic and Solid State Physics (LAASP) have shown how adding charge-carrying atoms like oxygen to a superconductor can increase the material’s ability to conduct electricity overall and -- paradoxically -- to decrease it in localized spots.



The discovery, published in the Aug. 12 issue of Science, could lead to the eventual development of more effective superconductors.

The scientists, led by Cornell professor of physics J.C. Séamus Davis, used a specialized scanning tunneling microscope (STM) in the basement of Cornell’s Clark Hall for the research. They identified for the first time the locations of individual oxygen atoms within a particular superconductor’s molecular structure and used that information to examine how the atoms affect current flow in their immediate vicinity. It’s a small but vital step, they say, toward understanding how superconductors work.


Superconductors are materials that conduct electricity with virtually no resistance. The materials, in this case copper-based compounds (cuprates) doped with charge-carrying atoms like oxygen and cooled to extremely low temperatures, are widely used in fields from medicine to the military. But the physics behind them is still not well understood, making the ultimate goal of creating a room-temperature superconductor elusive.

Researchers have long suspected that dopant atoms -- crucial for conductivity because they attract electrons and leave the positively charged gaps that allow current to flow without resistance -- are actually counterproductive because they create electronic disorder at the atomic level. But until now, no one had been able to look closely enough at the atomic structure to confirm the correlation.

The researchers at Cornell tackled the problem by preparing samples of a cuprate superconductor doped with different concentrations of oxygen atoms. Using the STM, which can measure current in areas less than a nanometer wide -- the width of three silicon atoms -- they mapped the materials according to how well or poorly current flowed in each point on the plane. The locations of the oxygen atoms, they found, correlated with the areas of energy disorder they had already identified.

"Now we can put the dopant atoms into the image and ask, are they correlated with the electronic disorder directly?" said Davis. "When the dopants are far away, electron waves are homogeneous." When the dopant atoms are near the conducting plane, though, the waves become drastically heterogeneous, causing the superconductivity to break down.

Think of the compound’s electrons as dancers moving together in a carefully choreographed production, Davis said.

"Superconductivity is made by pairing two electrons. It’s like a dance -- not a waltz, but a distributed dance like a contra dance," Davis said. "If you put stones in the middle of the dance floor you disturb the pattern. And once you’ve destroyed all the pairs, you’ve destroyed the superconductivity."

But (and here the contra dance analogy breaks down a little) the stones -- in this case, the dopant atoms -- are prerequisites for the dance. So taking them out isn’t an option.

"These atoms have to be working in two different ways -- one way on average and another way locally," said Kyle McElroy, a postdoctoral researcher at the University of California-Berkeley and co-author of the paper. "One of the big questions is why different cuprate families superconduct at different temperatures. There’s a spread of four to five times the transition temperature. Why do these transition temperatures change so much, and what is governing that?"

Experts predict that the worldwide market for superconductors will reach $5 billion by the year 2010 from about half that in 2000 -- if growth continues linearly. But if scientists can learn to make materials that superconduct at higher temperatures, the market could skyrocket.

"This kind of information is a necessary step toward understanding first the mechanism of high temperature superconductivity and, next, how to raise the transition temperatures," said James Slezak, co-author of the paper and a graduate student in physics at Cornell.

The paper’s other authors include D.H. Lee of the University of California-Berkeley, H. Eisaki of the National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan, and S. Uchida of the University of Tokyo.

Blaine P. Friedlander | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Physics and Astronomy:

nachricht A Keen Sense for Molecules
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Good vibrations feel the force
23.02.2018 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Newly designed molecule binds nitrogen

23.02.2018 | Life Sciences

Stagnation in the South Pacific Explains Natural CO2 Fluctuations

23.02.2018 | Earth Sciences

Mat4Rail: EU Research Project on the Railway of the Future

23.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>