Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotechnology Wins Innovation Fellowship

24.08.2005


A University of Leicester project which will have implications for the quality of magnetic recording has won a prestigious Innovation Fellowship, allowing researchers to develop its commercial potential.



Chris Binns, Professor of Nanoscience at the University’s Department of Physics and Astronomy, heads the project, which is a collaboration with Dr Robert Lamberton of Seagate and Dr Roer Bayston of the Queen’s Medical Centre at Nottingham. The project aims to develop a new facility that is capable of coating a surface with metal nanoparticles at a very high rate.

This is a new way of making metal films. Instead of coating a surface in vacuum with atoms as with a conventional evaporator, the element is first formed into tiny nanocrystals, typically containing a few hundred atoms. These pre-formed nanoparticles are then deposited onto surfaces.


It is a generic technology for making "nanostructured films" and it has applications for the magnetic recording industry in making very high performance magnetic films. The work with magnetic films has been done in collaboration with Seagate.

More recently Professor Binns’ research team have moved in a new direction, by making anti-microbial coatings by depositing silver nanoparticles. This could have important applications in surgical implants and is being carried out in collaboration with the Queen’s Medical Centre in Nottingham.

The target of the research is to have the high-flux source depositing nanostructured films for testing prototypes in magnetic read/write heads and in antimicrobial coatings.

At the University, Professor Binns is working with Dr Mark Everard, whose post is funded by the Innovation Fellowship.

The project has also received £54,000 for 12 months from Seagate up to April 2005, and Professor Binns is now negotiating with Seagate for a new tranche of funding.

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>