Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CCNY, Lehman experts find ’magnetic flames’ in molecular magnets exhibit properties akin to fire

23.08.2005


In a groundbreaking experiment, researchers from The City College of New York (CCNY) and Lehman College have measured the speed of magnetic avalanches and discovered that the process is analogous to the flame front of a flammable substance. The discovery of a “magnetic flame” could make it easier for engineers to study the dynamics of fire.



Magnetic avalanches occur when the polarity of a molecular nanomagnet is changed suddenly and sufficient energy is released to cause a chain reaction that changes the polarity of the other molecular nanomagnets in a crystal.

Yoko Suzuki, a graduate student at The City College, devised an experiment to measure the progress of a molecular avalanche through a crystal of Mn12 (manganese) acetate using an array of tiny micrometer sized Hall sensors placed underneath the specimen. Ms. Suzuki observed that the avalanche began at one end of the crystal and propagated at speeds of a few meters per second in the form of a “flame” front that released magnetic energy into the crystal.


“Molecular nanomagnets are the first-known magnetic materials in which the magnetic energy density is sufficient to ignite a ‘magnetic flame,’” said Dr. Myriam P. Sarachik, Distinguished Professor of Physics at CCNY and Ms. Suzuki’s mentor. “This could open a potentially important new road for investigating the dynamics of fire in flammable substances because, unlike chemical burning, magnetic burning is non-destructive, reversible and more readily controlled.”

The investigation into the propagation of magnetic avalanches grew out of a theory suggested by Eugene Chudnovsky and Dmitry Garanin. Dr. Chudnovsky, Distinguished Professor of Physics at Lehman College, collaborated with Ms. Suzuki and Professor Sarachik in the present work.

Chudnovsky and Garanin had theorized that under the right circumstances a magnetic system could be made to emit laser type radiation. They suggested that a magnetic avalanche might initiate such laser action. Measuring the speed of the avalanche would aid in the examination of the theory.

When experimentalists at CCNY discovered that the avalanche propagates at a constant speed of a few meters per second, Professor Chudnovsky proposed that the effect is, in fact, “magnetic burning”. Comparison between theory and experiment confirmed his conjecture.

A paper reporting the discovery of “magnetic burning” by Ms. Suzuki, Professors Sarachik and Chudnovsky and coauthors has been accepted for publication in Physical Review Letters. In addition to CCNY and Lehman College, scientists from the Weizmann Institute in Israel and the University of Florida participated in the project, providing the Hall sensors and crystals, respectively.

Jay Mwamba | EurekAlert!
Further information:
http://www.ccny.cuny.edu

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>