Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Cold linac’ commissioning major step for ORNL’s Spallation Neutron Source

22.08.2005


The "cold linac" is one of the Spallation Neutron Source’s most innovative and technically complex systems.


The Spallation Neutron Source at the Department of Energy’s Oak Ridge National Laboratory has met a crucial milestone on its way to completion in June 2006 -- operation of the superconducting section of its linear accelerator.

The SNS linac has two sections: a room-temperature, or warm, section, which completed its commissioning last January, and a superconducting, or cold, section, which operates at temperatures hundreds of degrees below zero. The cold linac provides the bulk of the power that drives the linac, and has already achieved an energy level of 865 MeV, which is about 75 percent of the speed of light. The SNS linac is the world’s first high energy, high power linac to apply superconducting technology to the acceleration of protons. "The successful operation of the cold linac is a major step toward the 2006 completion of the SNS and demonstrates the success of the collaboration of national labs in keeping the project on time, on budget and on scope. It represents, technically, one of the most complex systems of the SNS facility," said Thom Mason, ORNL’s Associate Director for the SNS. "This successful test is just another indicator of the outstanding team of men and women that ORNL has brought together to build and operate the SNS facility. They can be justifiably proud of this accomplishment," said Les Price, DOE’s project director for the SNS. The Thomas Jefferson National Accelerator Facility in Virginia, part of the team of six DOE national laboratories collaborating on the DOE Office of Science project, was responsible for the superconducting linac and its refrigeration system. Los Alamos National Laboratory in New Mexico provided the radio-frequency systems that drive the linac. The other DOE national laboratories supporting ORNL in the SNS collaboration are Argonne, Lawrence Berkeley, and Brookhaven. "Jefferson Lab congratulates the Oak Ridge SNS team on this major milestone," said Claus Rode, SNS project manager for Jefferson Lab. "The SNS project was a challenging five-year effort that used all of Jefferson Lab’s expertise in superconducting radiofrequency technology."

SNS will produce neutrons by accelerating a pulsed beam of high-energy protons down the 1,000-foot linac, compressing each pulse to high intensity, and delivering them to a liquid mercury target where neutrons are produced in a process called "spallation."



SNS will increase the intensity of pulsed neutrons available to researchers nearly tenfold, providing higher quality images molecular structures and motion. Together, ORNL’s High Flux Isotope Reactor and SNS will represent the world’s foremost facilities for neutron scattering, a technique pioneered at ORNL shortly after World War II.

When completed next year, SNS will become the world’s leading research facility for study of the structure and dynamics of materials using neutrons. It will operate as a user facility that will enable researchers from the United States and abroad to study the science of materials that forms the basis for new technologies in telecommunications, manufacturing, transportation, information technology, biotechnology and health.

Oak Ridge National Laboratory is a multiprogram laboratory managed for the Department of Energy by UT-Battelle.

Bill Cabage | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Safe glide at total engine failure with ELA-inside

27.02.2017 | Information Technology

Fraunhofer IFAM expands its R&D work on Coatings for protection against corrosion and marine growth

27.02.2017 | Materials Sciences

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>