Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Cold linac’ commissioning major step for ORNL’s Spallation Neutron Source

22.08.2005


The "cold linac" is one of the Spallation Neutron Source’s most innovative and technically complex systems.


The Spallation Neutron Source at the Department of Energy’s Oak Ridge National Laboratory has met a crucial milestone on its way to completion in June 2006 -- operation of the superconducting section of its linear accelerator.

The SNS linac has two sections: a room-temperature, or warm, section, which completed its commissioning last January, and a superconducting, or cold, section, which operates at temperatures hundreds of degrees below zero. The cold linac provides the bulk of the power that drives the linac, and has already achieved an energy level of 865 MeV, which is about 75 percent of the speed of light. The SNS linac is the world’s first high energy, high power linac to apply superconducting technology to the acceleration of protons. "The successful operation of the cold linac is a major step toward the 2006 completion of the SNS and demonstrates the success of the collaboration of national labs in keeping the project on time, on budget and on scope. It represents, technically, one of the most complex systems of the SNS facility," said Thom Mason, ORNL’s Associate Director for the SNS. "This successful test is just another indicator of the outstanding team of men and women that ORNL has brought together to build and operate the SNS facility. They can be justifiably proud of this accomplishment," said Les Price, DOE’s project director for the SNS. The Thomas Jefferson National Accelerator Facility in Virginia, part of the team of six DOE national laboratories collaborating on the DOE Office of Science project, was responsible for the superconducting linac and its refrigeration system. Los Alamos National Laboratory in New Mexico provided the radio-frequency systems that drive the linac. The other DOE national laboratories supporting ORNL in the SNS collaboration are Argonne, Lawrence Berkeley, and Brookhaven. "Jefferson Lab congratulates the Oak Ridge SNS team on this major milestone," said Claus Rode, SNS project manager for Jefferson Lab. "The SNS project was a challenging five-year effort that used all of Jefferson Lab’s expertise in superconducting radiofrequency technology."

SNS will produce neutrons by accelerating a pulsed beam of high-energy protons down the 1,000-foot linac, compressing each pulse to high intensity, and delivering them to a liquid mercury target where neutrons are produced in a process called "spallation."



SNS will increase the intensity of pulsed neutrons available to researchers nearly tenfold, providing higher quality images molecular structures and motion. Together, ORNL’s High Flux Isotope Reactor and SNS will represent the world’s foremost facilities for neutron scattering, a technique pioneered at ORNL shortly after World War II.

When completed next year, SNS will become the world’s leading research facility for study of the structure and dynamics of materials using neutrons. It will operate as a user facility that will enable researchers from the United States and abroad to study the science of materials that forms the basis for new technologies in telecommunications, manufacturing, transportation, information technology, biotechnology and health.

Oak Ridge National Laboratory is a multiprogram laboratory managed for the Department of Energy by UT-Battelle.

Bill Cabage | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>