Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Cold linac’ commissioning major step for ORNL’s Spallation Neutron Source

22.08.2005


The "cold linac" is one of the Spallation Neutron Source’s most innovative and technically complex systems.


The Spallation Neutron Source at the Department of Energy’s Oak Ridge National Laboratory has met a crucial milestone on its way to completion in June 2006 -- operation of the superconducting section of its linear accelerator.

The SNS linac has two sections: a room-temperature, or warm, section, which completed its commissioning last January, and a superconducting, or cold, section, which operates at temperatures hundreds of degrees below zero. The cold linac provides the bulk of the power that drives the linac, and has already achieved an energy level of 865 MeV, which is about 75 percent of the speed of light. The SNS linac is the world’s first high energy, high power linac to apply superconducting technology to the acceleration of protons. "The successful operation of the cold linac is a major step toward the 2006 completion of the SNS and demonstrates the success of the collaboration of national labs in keeping the project on time, on budget and on scope. It represents, technically, one of the most complex systems of the SNS facility," said Thom Mason, ORNL’s Associate Director for the SNS. "This successful test is just another indicator of the outstanding team of men and women that ORNL has brought together to build and operate the SNS facility. They can be justifiably proud of this accomplishment," said Les Price, DOE’s project director for the SNS. The Thomas Jefferson National Accelerator Facility in Virginia, part of the team of six DOE national laboratories collaborating on the DOE Office of Science project, was responsible for the superconducting linac and its refrigeration system. Los Alamos National Laboratory in New Mexico provided the radio-frequency systems that drive the linac. The other DOE national laboratories supporting ORNL in the SNS collaboration are Argonne, Lawrence Berkeley, and Brookhaven. "Jefferson Lab congratulates the Oak Ridge SNS team on this major milestone," said Claus Rode, SNS project manager for Jefferson Lab. "The SNS project was a challenging five-year effort that used all of Jefferson Lab’s expertise in superconducting radiofrequency technology."

SNS will produce neutrons by accelerating a pulsed beam of high-energy protons down the 1,000-foot linac, compressing each pulse to high intensity, and delivering them to a liquid mercury target where neutrons are produced in a process called "spallation."



SNS will increase the intensity of pulsed neutrons available to researchers nearly tenfold, providing higher quality images molecular structures and motion. Together, ORNL’s High Flux Isotope Reactor and SNS will represent the world’s foremost facilities for neutron scattering, a technique pioneered at ORNL shortly after World War II.

When completed next year, SNS will become the world’s leading research facility for study of the structure and dynamics of materials using neutrons. It will operate as a user facility that will enable researchers from the United States and abroad to study the science of materials that forms the basis for new technologies in telecommunications, manufacturing, transportation, information technology, biotechnology and health.

Oak Ridge National Laboratory is a multiprogram laboratory managed for the Department of Energy by UT-Battelle.

Bill Cabage | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Physics and Astronomy:

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>