Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light that travels… faster than light!

22.08.2005


A team of researchers from the Ecole Polytechnique Fédérale de Lausanne (EPFL) has successfully demonstrated, for the first time, that it is possible to control the speed of light – both slowing it down and speeding it up – in an optical fiber, using off-the-shelf instrumentation in normal environmental conditions. Their results, to be published in the August 22 issue of Applied Physics Letters, could have implications that range from optical computing to the fiber-optic telecommunications industry.



On the screen, a small pulse shifts back and forth – just a little bit. But this seemingly unremarkable phenomenon could have profound technological consequences. It represents the success of Luc Thévenaz and his fellow researchers in the Nanophotonics and Metrology laboratory at EPFL in controlling the speed of light in a simple optical fiber. They were able not only to slow light down by a factor of three from its well – established speed c of 300 million meters per second in a vacuum, but they’ve also accomplished the considerable feat of speeding it up – making light go faster than the speed of light.

This is not the first time that scientists have tweaked the speed of a light signal. Even light passing through a window or water is slowed down a fraction as it travels through the medium. In fact, in the right conditions, scientists have been able to slow light down to the speed of a bicycle, or even stop it altogether. In 2003, a group from the University of Rochester made an important advance by slowing down a light signal in a room-temperature solid. But all these methods depend on special media such as cold gases or crystalline solids, and they only work at certain well-defined wavelengths. With the publication of their new method, the EPFL team, made up of Luc Thévenaz, Miguel Gonzaléz Herraez and Kwang-Yong Song, has raised the bar higher still. Their all-optical technique to slow light works in off-the-shelf optical fibers, without requiring costly experimental set-ups or special media. They can easily tune the speed of the light signal, thus achieving a wide range of delays.


"This has the enormous advantage of being a simple, inexpensive procedure that works at any wavelength, notably at wavelengths used in telecommunications," explains Thévenaz.

The telecommunications industry transmits vast quantities of data via fiber optics. Light signals race down the information superhighway at about 186,000 miles per second. But information cannot be processed at this speed, because with current technology light signals cannot be stored, routed or processed without first being transformed into electrical signals, which work much more slowly. If the light signal could be controlled by light, it would be possible to route and process optical data without the costly electrical conversion, opening up the possibility of processing information at the speed of light.

This is exactly what the EPFL team has demonstrated. Using their Stimulated Brillouin Scattering (SBS) method, the group was able to slow a light signal down by a factor of 3.6, creating a sort of temporary "optical memory." They were also able to create extreme conditions in which the light signal travelled faster than 300 million meters a second. And even though this seems to violate all sorts of cherished physical assumptions, Einstein needn’t move over – relativity isn’t called into question, because only a portion of the signal is affected.

Slowing down light is considered to be a critical step in our ability to process information optically. The US Defense Advanced Research Projects Agency (DARPA) considers it so important that it has been funnelling millions of dollars into projects such as "Applications of Slow Light in Optical Fibers" and research on all-optical routers. To succeed commercially, a device that slows down light must be able to work across a range of wavelengths, be capable of working at high bit-rates and be reasonably compact and inexpensive.

The EPFL team has brought applications of slow light an important step closer to this reality. And Thévenaz points out that this technology could take us far beyond just improving on current telecom applications. He suggests that their method could be used to generate high-performance microwave signals that could be used in next-generation wireless communication networks, or used to improve transmissions between satellites. We may just be seeing the tip of the optical iceberg.

Luc Thevenaz | EurekAlert!
Further information:
http://www.epfl.ch

More articles from Physics and Astronomy:

nachricht The moon is front and center during a total solar eclipse
24.07.2017 | NASA/Goddard Space Flight Center

nachricht Superluminous supernova marks the death of a star at cosmic high noon
24.07.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>