Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light that travels… faster than light!

22.08.2005


A team of researchers from the Ecole Polytechnique Fédérale de Lausanne (EPFL) has successfully demonstrated, for the first time, that it is possible to control the speed of light – both slowing it down and speeding it up – in an optical fiber, using off-the-shelf instrumentation in normal environmental conditions. Their results, to be published in the August 22 issue of Applied Physics Letters, could have implications that range from optical computing to the fiber-optic telecommunications industry.



On the screen, a small pulse shifts back and forth – just a little bit. But this seemingly unremarkable phenomenon could have profound technological consequences. It represents the success of Luc Thévenaz and his fellow researchers in the Nanophotonics and Metrology laboratory at EPFL in controlling the speed of light in a simple optical fiber. They were able not only to slow light down by a factor of three from its well – established speed c of 300 million meters per second in a vacuum, but they’ve also accomplished the considerable feat of speeding it up – making light go faster than the speed of light.

This is not the first time that scientists have tweaked the speed of a light signal. Even light passing through a window or water is slowed down a fraction as it travels through the medium. In fact, in the right conditions, scientists have been able to slow light down to the speed of a bicycle, or even stop it altogether. In 2003, a group from the University of Rochester made an important advance by slowing down a light signal in a room-temperature solid. But all these methods depend on special media such as cold gases or crystalline solids, and they only work at certain well-defined wavelengths. With the publication of their new method, the EPFL team, made up of Luc Thévenaz, Miguel Gonzaléz Herraez and Kwang-Yong Song, has raised the bar higher still. Their all-optical technique to slow light works in off-the-shelf optical fibers, without requiring costly experimental set-ups or special media. They can easily tune the speed of the light signal, thus achieving a wide range of delays.


"This has the enormous advantage of being a simple, inexpensive procedure that works at any wavelength, notably at wavelengths used in telecommunications," explains Thévenaz.

The telecommunications industry transmits vast quantities of data via fiber optics. Light signals race down the information superhighway at about 186,000 miles per second. But information cannot be processed at this speed, because with current technology light signals cannot be stored, routed or processed without first being transformed into electrical signals, which work much more slowly. If the light signal could be controlled by light, it would be possible to route and process optical data without the costly electrical conversion, opening up the possibility of processing information at the speed of light.

This is exactly what the EPFL team has demonstrated. Using their Stimulated Brillouin Scattering (SBS) method, the group was able to slow a light signal down by a factor of 3.6, creating a sort of temporary "optical memory." They were also able to create extreme conditions in which the light signal travelled faster than 300 million meters a second. And even though this seems to violate all sorts of cherished physical assumptions, Einstein needn’t move over – relativity isn’t called into question, because only a portion of the signal is affected.

Slowing down light is considered to be a critical step in our ability to process information optically. The US Defense Advanced Research Projects Agency (DARPA) considers it so important that it has been funnelling millions of dollars into projects such as "Applications of Slow Light in Optical Fibers" and research on all-optical routers. To succeed commercially, a device that slows down light must be able to work across a range of wavelengths, be capable of working at high bit-rates and be reasonably compact and inexpensive.

The EPFL team has brought applications of slow light an important step closer to this reality. And Thévenaz points out that this technology could take us far beyond just improving on current telecom applications. He suggests that their method could be used to generate high-performance microwave signals that could be used in next-generation wireless communication networks, or used to improve transmissions between satellites. We may just be seeing the tip of the optical iceberg.

Luc Thevenaz | EurekAlert!
Further information:
http://www.epfl.ch

More articles from Physics and Astronomy:

nachricht Quantum optics allows us to abandon expensive lasers in spectroscopy
22.11.2017 | Lomonosov Moscow State University

nachricht Nano-watch has steady hands
22.11.2017 | University of Vienna

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>