Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

History’s greatest comet hunter discovers 1000th comet

19.08.2005


On 5 August 2005, the ESA/NASA SOHO spacecraft achieved an incredible milestone - the discovery of its 1000th comet!


999th and 1000th comets identified in SOHO images



The 1000th comet was a Kreutz-group comet spotted in images from the C3 coronagraph on SOHO’s LASCO instrument by Toni Scarmato, from Calabria, Italy. Just five minutes prior to discovering SOHO’s 1000th comet, Toni had also spotted SOHO’s 999th comet! These comets take Toni’s personal number of SOHO discoveries to 15.

Many SOHO comet discoveries have been by amateurs using SOHO images on the internet, and SOHO comet hunters come from all over the world. Toni Scarmato, a high school teacher and astrophysics graduate of the University of Bologna, said: “I am very happy for this special experience that is possible thanks to the SOHO satellite and NASA-ESA collaboration.


"I want to dedicate the SOHO 1000th comet to my wife Rosy and my son Kevin to compensate for the time that I have taken from them to search for SOHO comets."

The SOHO team also held a contest over the internet to guess the time when the 1000th comet would be discovered. The contest winner is Andrew Dolgopolov of Dublin, Ireland, who guessed the time of the comet’s closest approach to the Sun (perihelion time) within 22 minutes.

SOHO, the Solar and Heliospheric Observatory , is a joint effort between NASA and ESA and is now in its tenth year of operation. Although it was originally planned as a solar and heliospheric mission, it was optimistically hoped that LASCO might observe at least a handful of ‘sungrazer’ comets, based on the success of the SOLWIND coronagraph in the late 1970s and 1980s, which discovered a small number of very bright Kreutz-group comets.
It was not long after SOHO began sending down a steady stream of data in 1996 that SOHO scientists spotted a Kreutz-group comet in LASCO images. Soon, several more comets had been found and word started to spread of SOHO’s potential as a comet discoverer.

In 2000, amateur astronomer Mike Oates started to search the SOHO images, which had recently became available via the internet. He soon revealed just how much potential SOHO had by quickly spotting over 100 comets in LASCO images.

Almost all SOHO’s comets are discovered using images from its LASCO instrument, the Large Angle and Spectrometric Coronagraph. LASCO is used to observe the faint, multimillion-degree outer atmosphere of the Sun, called the corona. A disk in the instrument is used to make an artificial eclipse, blocking direct light from the Sun so the much fainter corona can be seen. Sungrazing comets are discovered when they enter LASCO’s field of view as they pass close by the Sun.

As time passed, more professional astronomers, as well as amateur enthusiasts from all over the world, joined the search for SOHO comets. In August 2002, Rainer Kracht (now the leading SOHO comet discoverer, with over 150 SOHO comets) spotted SOHO’s 500th comet. This in itself was an achievement that none of the SOHO/LASCO scientists ever imagined would, or could, happen.

However, just three years later, SOHO, with 1000 comet discoveries, is responsible for almost half of all officially recorded comets in history! Add to this the fact that the SOHO mission has completely revolutionised solar physics and the understanding of the Sun, and it shows just how truly amazing the SOHO spacecraft is!

Franco Bonacina | EurekAlert!
Further information:
http://www.esa.int/esaCP/SEMCA3908BE_index_0.html

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>