Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Microprinting Technique Improves Nanoscale Fabrication

19.08.2005


Scientists will announce next month a new technique called microdisplacement printing, which makes possible the highly precise placement of molecules during the fabrication of nanoscale components for electronic and sensing devices. The new technique, which also extends the library of molecules that can be used for patterning, will be described in the 14 September issue of the journal Nano Letters by a team led by Paul S. Weiss, professor of chemistry and physics at Penn State.



The new microdisplacement technique is based on a widely used patterning method known as microcontact printing--a simple way of fabricating chemical patterns that does not require clean rooms and other kinds of special and expensive environments. Both methods involve "inking" a patterned rubber-like stamp with a solution of molecules, then applying the inked stamp to a surface.

"Microdisplacement gives us more control over the precision with which the patterns are placed and retained, and also allows us to use a wider range of molecules," Weiss says.


One of the limitations of microcontact printing is that its precision is limited at the edges of a stamped pattern by the tendency of the applied molecules to skitter across the stamped surface, blurring or obliterating the applied pattern and destroying its usefulness. Weiss’s improved microdisplacement technique solves this problem by applying a self-assembled-monolayer film--a single ordered layer of spherical adamantanethiolate molecules--to keep the stamped molecules in place on the surface. "We specifically engineered the adamantanethiol molecule to have a very weak chemical bond with the surface so that it would detach easily when bumped by a stronger-bonding molecule," Weiss explains. The molecules inked on the stamp replace the adamantanethiolate molecules wherever they touch the monolayer film, but the surrounding molecules in the film remain attached to the surface to prevent the applied molecules from wandering.

"Microdisplacement printing uses many of the same procedures as microcontact printing except one first prepares the substrate by coating it with a self-assembled monolayer of adamantanethiolate, which is inexpensive and easy to apply," Weiss explains. "You dip the substrate in a solution of these molecules, pull it out, and they assemble themselves into an ordered film one molecule thick."

In addition to providing more control over the precision of stamped patterns, the new microdisplacement technique also relaxes the requirements in precisely positioning a series of stamps used to apply consecutive patterns with different molecular inks. "You don’t have to be extremely precise about the exact placement of the stamps as long as you apply the molecular inks in order of their bonding strengths," Weiss explains. Each successive layer of molecules either will displace or will not displace the already-applied molecules, depending on their relative bonding strengths with the underlying surface.

The research was aided by the Weiss lab’s unusual collection of microscopes, which enable the scientists to get a clear picture of the results of their experiments, both at the broad scale of a stamped pattern and at the narrow scale of just a single molecule. One scanning tunneling microscope that Weiss and his group designed and built themselves, for example, has 1,000 times more resolution than is needed to image an individual atom.

Adamantanethiol is related to the family of alkanethiol molecules, which have been studied extensively as a model systems for their ability to form well-ordered monolayer films on gold. Weiss and his team were studying the adamantanethiolate-on-gold system when graduate student Arrelaine Dameron discovered that stronger-bonding molecules easily displaced the adamantanethiolate molecules. Her discovery has led to further studies of this system by the Weiss team, including how the displacement can be applied in a broad range of applications using a variety of materials.

"We have mapped out strategies in this model system and are now investigating how we can apply these strategies more broadly as the chemistry is developed for self-assembled monolayers on other substrates, especially semiconductors," Weiss says. "Our goals are to see how far we can take these kinds of simple techniques, along with our knowledge of intermolecular interactions, to bridge the 1-to-100-nanometer length scale in nanofabrication, which even at the high end currently requires very difficult, slow, and expensive techniques."

In addition to Weiss and Dameron, the Penn State research team includes postdoctoral fellows Jennifer Hampton and Susan Gillmor and graduate students Rachel Smith and T. J. Mullen. The research was supported by the Air Force Office of Scientific Research, the Army Research Office, the Defense Advanced Research Projects Agency, the National Science Foundation, the Office of Naval Research, and the Semiconductor Research Corporation. The work was performed as a part of both the Center for Nanoscale Science and the National Nanofabrication Infrastructure Network.

Barbara K. Kennedy | EurekAlert!
Further information:
http://www.science.psu.edu/alert/Weiss8-2005.htm
http://www.psu.edu

More articles from Physics and Astronomy:

nachricht NASA's James Webb Space Telescope completes final cryogenic testing
21.11.2017 | NASA/Goddard Space Flight Center

nachricht Previous evidence of water on mars now identified as grainflows
21.11.2017 | US Geological Survey

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>