Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supernova 1987A: Fast Forward to the Past

18.08.2005


Recent Chandra observations have revealed new details about the fiery ring surrounding the stellar explosion that produced Supernova 1987A. The data give insight into the behavior of the doomed star in the years before it exploded, and indicate that the predicted spectacular brightening of the circumstellar ring has begun.


Credit: X-ray: NASA/CXC/U.Colorado/S.Zhekov et al.; Optical: NASA/STScI/CfA/P.Challis



The supernova occurred in the Large Magellanic Cloud, a galaxy only 160,000 light years from Earth. The outburst was visible to the naked eye, and is the brightest known supernova in almost 400 years. The site of the explosion was traced to the location of a blue supergiant star called Sanduleak -69º 202 (SK -69 for short) that had a mass estimated at approximately 20 Suns.

Subsequent optical, ultraviolet and X-ray observations have enabled astronomers to piece together the following scenario for SK -69: about ten million years ago the star formed out of a dark, dense, cloud of dust and gas; roughly a million years ago, the star lost most of its outer layers in a slowly moving stellar wind that formed a vast cloud of gas around it; before the star exploded, a high-speed wind blowing off its hot surface carved out a cavity in the cool gas cloud.


The intense flash of ultraviolet light from the supernova illuminated the edge of this cavity to produce the bright ring seen by the Hubble Space Telescope. In the meantime the supernova explosion sent a shock wave rumbling through the cavity.

In 1999, Chandra imaged this shock wave, and astronomers have waited expectantly for the shock wave to hit the edge of the cavity, where it would encounter the much denser gas deposited by the red supergiant wind, and produce a dramatic increase in X-radiation. The latest data from Chandra and the Hubble Space Telescope indicate that this much-anticipated event has begun.

Optical hot-spots now encircle the ring like a necklace of incandescent diamonds (image on right). The Chandra image (left) reveals multimillion-degree gas at the location of the optical hot-spots.

X-ray spectra obtained with Chandra provide evidence that the optical hot-spots and the X-ray producing gas are due to a collision of the outward-moving supernova shock wave with dense fingers of cool gas protruding inward from the circumstellar ring (see illustration). These fingers were produced long ago by the interaction of the high-speed wind with the dense circumstellar cloud.

The dense fingers and the visible circumstellar ring represent only the inner edge of a much greater, unknown amount of matter ejected long ago by SK -69. As the shock wave moves into the dense cloud, ultraviolet and X-radiation from the shock wave will heat much more of the circumstellar gas.

Then, as remarked by Richard McCray, one of the scientists involved in the Chandra research, "Supernova 1987A will be illuminating its own past."

Fast Facts for Supernova 1987A:
Credit X-ray: NASA/CXC/U.Colorado/S.Zhekov et al.; Optical: NASA/STScI/CfA/P.Challis
Scale Each panel is 2.4 arcsec per side.
Category Supernovas & Supernova Remnants
Coordinates (J2000) RA 05h 35m 28.30s | Dec -69º 16’ 11.10
Constellation Dorado
Observation Dates January 9, 2005
Observation Time 30 hours
Obs. IDs 5579
Color Code Intensity
Instrument ACIS
Also Known As SN 1987A
References S. A. Zhekov, R. McCRay, K. Borkowski, D. Burrows, and S. Park, "Chandra Observations of Shock Kinematics in Supernova Remnant 1987A" , Astrophysical Journal Letters, Volume 628, pp. L127-L130. 2005 (See also astro-ph/0506443)
Distance Estimate About 160,000 light years
Release Date August 17, 2005

Megan Watzke | EurekAlert!
Further information:
http://chandra.harvard.edu/photo/2005/sn87a/
http://www.cfa.harvard.edu

More articles from Physics and Astronomy:

nachricht Turning entanglement upside down
22.05.2018 | Universität Innsbruck

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>