Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue simulation to help merge molecules with silicon electronics

18.08.2005


This image shows how a new simulation predicts current flow between silicon atoms and molecules depending on how the two materials are connected to each other. The graphs on the left are the simulation tool’s predictions and the graphs on the right are from data collected in experiments performed by other researchers. The comparison demonstrates that the simulation tool’s predictions are the same as the experimental data, proving that the tool is accurate. The tool will help researchers design "molecular electronic" devices for future computers and advanced sensors. (School of Electrical and Computer Engineering, Purdue University)


Engineers at Purdue University have created a nanotech simulation tool that shows how current flows between silicon atoms and individual molecules to help researchers design "molecular electronic" devices for future computers and advanced sensors.

Molecular electronics could make it possible to manufacture hardware by "growing" circuits and devices in layers that may "self-assemble," similar to the growth of structures in living organisms. Devices for a variety of applications might be fabricated using techniques based on chemical attractions rather than the complex, expensive processes now used to etch electronic circuits.

One challenge, however, in developing molecular electronics is to better understand how electricity is conducted between molecules and silicon contacts connecting various devices in a circuit, said Geng-Chiau Liang, a postdoctoral research assistant in Purdue’s School of Electrical and Computer Engineering.



Researchers will be able to use the new simulation tool to see precisely how electrical conductivity changes depending on how molecules are connected to silicon, information that is critical to properly design the devices.

"I believe we might be one of the first theorists who have created a tool to show how electricity is conducted between molecules and silicon at the atomic level," said Avik Ghosh, a research scientist in electrical and computer engineering who worked with Liang.

Details about the simulation tool are appearing in the current issue (Aug. 12, Volume 95, Issue 7) of the journal Physical Review Letters. The paper was written by Liang and Ghosh. The research has been funded through two national centers based at Purdue’s Discovery Park, the university’s hub for interdisciplinary research.

Scientists and engineers are working to develop techniques for creating future computers, sensors and other devices that use molecules, such as proteins and DNA, instead of conventional electronic components. The concept may spawn new "biochips" that will use proteins in sensors for detecting contaminants and pollutants in the air and water and for analyzing the blood and biological samples.

"The idea is that molecules might be able to complement or supplement silicon," Ghosh said. "All traditional research in molecular electronics has focused on combining molecules with metal contacts, but we’ve been studying the interaction of molecules and silicon instead of metals because the computer industry is built on semiconductors, which is silicon."

Liang and Ghosh used the tool to show how current flows between silicon atoms and molecules called buckminsterfullerenes, or "buckyballs."

Named after architect R. Buckminster Fuller, who designed the geodesic dome, buckyballs are soccer-ball-shaped molecules containing 60 carbon atoms. A buckyball has a width of about 1 nanometer, or one-billionth of a meter, which is roughly 10 atoms wide.

"This paper is a proof of concept showing that our theory is at a point that we can actually look at experiments and explain them quantitatively," Liang said. "We have shown how the conductance of electricity changes when you change the type of bond connecting buckyballs to silicon."

The researchers used their computational model to predict how electricity flows when buckyballs and silicon are connected in three ways. In one case, there is no chemical bond – the buckyball is simply sitting on top of the silicon. In another case, the molecule has been connected to silicon by annealing, or heating, the silicon. And in the third case, the buckyball is resting inside of a tiny pit, a natural defect existing in the silicon.

The model precisely plotted how conduction and voltage changed in the three types of connections, and those predictions agreed with experimental data from other researchers who measured the actual changes in current flow in laboratories.

"Because our predictions agreed with actual experimental data, we know they are accurate," Ghosh said. "This means you can use the model to give theoretical guidance to experiments instead of using strictly a trial-and-error approach."

Together with Supriyo Datta, the Thomas Duncan Distinguished Professor of Electrical and Computer Engineering at Purdue, and his students, Liang and Ghosh developed the mathematical theory on which the model is based. The researchers used a Purdue supercomputer to develop and test the simulation.

The Purdue engineers used buckyballs in their simulation because the molecules are well-known in the scientific community and data are readily available. The tool, however, could be used to simulate conduction using any molecule connected to silicon.

"Researchers want to know what kind of molecule can provide specific conduction characteristics, and they can substitute other molecules for buckyballs," Liang said. "What we can now do is theoretically explain the experiments in quantitative detail, which is really important for any technology.

"To do this, you must have an atomistic understanding of current flow – basically, how does electricity conduct at the atomic level."

The research is ongoing and has been supported by the Network for Computational Nanotechnology, funded by the National Science Foundation and directed by Mark Lundstrom, Purdue’s Scifres Distinguished Professor of Electrical and Computer Engineering; the Semiconductor Research Corporation; the Defense University Research Initiative on Nanotechnology, which is supported by the U.S. Army Research Office; and the Defense Advanced Research Projects Agency.

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>