Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CERN neutrino project on target

16.08.2005


Scientists at CERN announced the completion of the target assembly for the CERN neutrinos to Gran Sasso project, CNGS. On schedule for start-up in May 2006, CNGS will send a beam of neutrinos through the Earth to the Gran Sasso laboratory 730km away in Italy in a bid to unravel the mysteries of nature’s most elusive particles.



CNGS forms a unique element in the global effort to understand neutrinos, the chameleons of the fundamental particle world. Neutrinos come in three types, or flavours, and have the ability to change between one flavour and another. Neutrinos interact hardly at all with other matter. Trillions of them pass through us every second, and it is precisely their vast numbers that make them a key element in understanding the Universe and its evolution.

The neutrinos leaving CERN are mainly of the muon type. Theory says that by the time they get to Gran Sasso, some of them will have changed into tau neutrinos. Detectors under construction at the Gran Sasso laboratory will measure how many tau neutrinos appear. This is the crucial distinction between CNGS and other long baseline neutrino experiments, which measure the numbers of muon neutrinos at the source and at the detectors to count how many disappear on the way. The measurements are complementary, and both are necessary for a full understanding of the physics of neutrinos. CNGS’s neutrino experiments must be extraordinarily sensitive to detect the small number of tau neutrinos appearing in the beam. Just a few a year will be detected at Gran Sasso.


Having been successfully assembled in the lab, the CNGS target will now be dismantled for installation in its underground target chamber. Installation of the neutrino beam will be complete by the end of the year, and the first beam of neutrinos will leave Geneva, pass about 10km below Florence, and reach Gran Sasso northeast of Rome in May 2006.

Sophie Sanchis | alfa
Further information:
http://www.cern.ch

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>