Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Customized Y-shaped carbon nanotubes can compute

15.08.2005



Researchers at UCSD and Clemson University have discovered that specially synthesized carbon nanotube structures exhibit electronic properties that are improved over conventional transistors used in computers. In a paper published* in the September issue of Nature Materials and released online on August 14, UCSD Mechanical and Aerospace Engineering professors Prabhakar Bandaru and Sungho Jin, graduate student Chiara Daraio, and Clemson physicist Apparao M. Rao reported that Y-shaped nanotubes behave as electronic switches similar to conventional MOS (metal oxide semiconductor) transistors, the workhorses of modern microprocessors, digital memory, and application-specific integrated circuits.

“This is the first time that a transistor-like structure has been fabricated using a branched carbon nanotube,” said Bandaru. “This discovery represents a new way of thinking about nano-electronic devices, and I think people interested in creating functionality at the nanoscale will be inspired to explore the ramifications of these Y-junction elements in greater detail.”

The stunning increase in the speed and power efficiency of electronics over the past two decades was primarily due to the steady shrinkage in size of conventional transistors. Chip makers have reduced the minimum feature size of transistors to about 100 nanometers, and that dimension is expected to shrink by the end of this decade. However, industry experts predict that fundamental technological and financial limits will prevent the makers of conventional MOS transistors to reduce their size much further. The Y-shaped nanotubes discussed in the Nature Materials paper are only a few tens of nanometers thick and can be made as thin as a few nanometers.



“The small size and dramatic switching behavior of these nanotubes makes them candidates for a new class of transistor,” said Bandaru.

The new transistors were initially grown as straight nanotube elements. Titanium-modified iron catalyst particles added to the synthesis mixture were then attached to the straight nanotubes, nucleating additional growth, which continued like branches growing from a tree trunk. Consequently, the nascent nanotubes assumed a Y-shape with the catalyst particle gradually becoming absorbed at the junction of the stem and two branches.

When electrical contacts are attached to the nanotube structures, electrons travel into one arm of the Y, hop onto the catalyst particle, and then hop to the other arm and flow outward. Experiments conducted in Bandaru’s lab at UCSD’s Jacobs School of Engineering showed that the movement of electrons through the Y-junction can be finely controlled, or gated, by applying a voltage to the stem. Bandaru hypothesized that positive charge applied to the stem enhances the flow of electrons through the two arms, producing a strong “on” signal. Then, when the polarity of the charge is reversed, the movement of electrons through the arms essentially stops, creating an “off” signal. Such binary logic is the basis of nearly all transistors.

“Among electrical device engineers, this phenomenon is called gating,” said Bandaru. He said the phenomenon effectively makes Y-shaped nanotubes the smallest ready-made transistor yet, with rapid switching speeds and possible three-way gating capability. In earlier attempts to make carbon nanotube-based transistors, separate gates were added rather than built in.

“We think this discovery extends the paradigm of nanotechnology beyond just making things small,” said Bandaru. “We can synthesize functionality at the nanoscale, in this case to include the three elements of a circuit – the gate, source, and drain – and we don’t have to go to the trouble of making them separately and assembling them.”

The researchers plan to experiment with various other catalyst particles in order to tailor the three-way gating properties of the Y-junctions. “If we can easily fabricate, manipulate, and assemble these nano-devices on a large scale they could become the basis of a new kind of transistor and nanotechnology,” said Bandaru.

* "Novel electrical switching behaviour and logic in carbon nanotube Y-junctions," P.R. Bandaru, C. Daraio, S. Jin and A.M. Rao, Nature Materials, September 2005

Rex Graham | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Physics and Astronomy:

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

nachricht Large, distant comets more common than previously thought
26.07.2017 | University of Maryland

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>