Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Powerful Mineral Mapper Headed to Mars

15.08.2005


APL-Built Spectrometer on NASA’s Latest Mission to the Red Planet



With today’s launch of NASA’s Mars Reconnaissance Orbiter spacecraft from Cape Canaveral Air Force Station, Fla., the Compact Reconnaissance Imaging Spectrometer for Mars – or CRISM – joins the set of high-tech detectives seeking traces of water on the red planet.

Built by the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Md., CRISM is the first visible-infrared spectrometer to fly on a NASA Mars mission. Its primary job: look for the residue of minerals that form in the presence of water, the “fingerprints” left by evaporated hot springs, thermal vents, lakes or ponds on Mars when water could have existed on the surface.


With unprecedented clarity, CRISM will map areas on the martian surface down to house-sized scales – as small as 60 feet (about 18 meters) across – when the spacecraft is in its average orbit altitude of about 190 miles (more than 300 kilometers).

“CRISM plays a very important role in Mars exploration,” says APL’s Dr. Scott Murchie, the instrument’s principal investigator. “Our data will identify sites most likely to have contained water, and which would make the best potential landing sites for future missions seeking fossils or even traces of life on Mars.”

Though certain landforms provide evidence that water may once have flowed on Mars, Murchie says scientists have little evidence of sites containing mineral deposits created by long-term interaction between water and rock. The NASA Rover Opportunity found evidence for liquid water in Meridian Planum – a large plain near Mars’ equator – but that is only one of many hundreds of sites where future spacecraft could land.

Peering through a telescope with a 4-inch (10-centimeter) aperture, and with a greater capability to map spectral variations than any similar instrument sent to another planet, CRISM will read 544 “colors” in reflected sunlight to detect minerals in the surface. Its highest resolution is about 20 times sharper than any previous look at Mars in infrared wavelengths.

“At infrared wavelengths, rocks that look absolutely the same to human eyes become very different,” Murchie says. “CRISM has the capability to take images in which different rocks will ‘light up’ in different colors.”

CRISM is mounted on a gimbal, allowing it to follow targets on the surface as the orbiter passes overhead. CRISM will spend the first half of a two-year orbit mission mapping Mars at 650-foot (200-meter) scales, searching for potential study areas. Several thousand promising sites will then be measured in detail at CRISM’s highest spatial and spectral resolution. CRISM will also monitor seasonal variations in dust and ice particles in the atmosphere, supplementing data gathered by the orbiter’s other instruments and providing new clues about the Martian climate.

“CRISM will improve significantly on the mapping technology currently orbiting Mars,” says CRISM Project Manager Peter Bedini, of APL. “We’ll not only look for future landing sites, but we’ll be able to provide details on information the Mars Exploration Rovers are gathering now. There is a lot more to learn, and after CRISM and the Mars Reconnaissance Orbiter there will still be more to learn. But with this mission we’re taking a big step in exploring and understanding Mars.”

As the Mars Reconnaissance Orbiter cruises to its destination, the CRISM operations team continues to fine-tune the software and systems it will use to command the instrument and receive, read, process, and store a wealth of data from orbit – more than 10 terabytes when processed back on Earth, enough to fill more than 15,000 compact discs. The spacecraft is set to reach Mars next March, use aerobraking to circularize its orbit, and settle into its science orbit by November 2006.

APL, which has built more than 150 spacecraft instruments over the past four decades, led the effort to develop, integrate and test CRISM. CRISM’s co-investigators are top planetary scientists from Brown University, the Jet Propulsion Laboratory, Northwestern University, Space Science Institute, Washington University in St. Louis, University of Paris, the Applied Coherent Technology Corporation, and NASA’s Goddard Space Flight Center, Ames Research Center and Johnson Space Center.

The Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, manages the Mars Reconnaissance Orbiter mission for NASA’s Science Mission Directorate.

Michael Buckley | EurekAlert!
Further information:
http://crism.jhuapl.edu
http://www.jhuapl.edu

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>