Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ariane 5 lifts record payload into space

11.08.2005


This morning an Ariane 5G launcher lifted off from Europe’s Spaceport in French Guiana. On board was the largest telecommunications satellite ever to be placed into geostationary transfer orbit.



The mission was initially delayed during the two-hour-long launch window to verify telemetry readings from Ariane 5’s mobile launch table, and the countdown subsequently resumed for an early morning takeoff from the ELA-3 launch zone.

The heavyweight THAICOM 4 (IPSTAR) satellite had a lift-off mass of almost 6500 kg. Before this morning’s launch, the record for the heaviest telecommunications satellite to be placed into orbit belonged to the Anik F2 satellite, launched by an Ariane 5 launcher in July 2004.


THAICOM 4, built for Shin Satellite Plc of Thailand, will provide businesses and consumers throughout Asia, Australia and New Zealand with various levels of Internet access services. The satellite has a total data throughput capacity of over 45 Gbps. This is the fourth Shin Satellite to be launched by an Ariane vehicle. An Ariane 4 vehicle launched the first satellite in 1993.

The next launch to take place from Europe’s Spaceport will be Flight 168, an Ariane 5G dual launch mission scheduled for 29 September.

Marc Toussaint | alfa
Further information:
http://www.esa.int/SPECIALS/Launchers_Home/SEMA4U808BE_0.html

More articles from Physics and Astronomy:

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>