Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

French, Swiss Research Groups Demonstrate New "Phase" in Biological Imaging

10.08.2005


The Beginnings of a New Phase in Medical Imaging? Phase-Contrast Imaging Device Provides 3-Dimensional Views of Hard-to-Image Biological Objects



In a development that could help usher in a new kind of medical imaging for clinics and hospitals, researchers have demonstrated a practical x-ray device that provides 2- and 3-dimensional images of features in soft biological tissue that are ordinarily hard to discern with conventional x-ray imaging. Performed by researchers at the Paul Scherrer Institut in Switzerland and the European Synchrotron Radiation Facility in France, this work may help make practical new medical applications, such as the ability to detect cancerous breast tissue directly, rather than the hard-tissue calcifications that are produced in later stages of the disease. The new x-ray demonstration appears in the 8 August issue of Optics Express, an open-access journal published by the Optical Society of America.

X-rays excel at imaging hard tissue--such as teeth--as well as the differences between hard and soft tissue--such as bones and skin in the human hand. However, x-rays are not good at distinguishing between different types of soft tissue, such as normal and cancerous cells in the breast. While x-ray mammography detects the hard “calcifications” that are the byproducts of breast tumors, researchers wish to be able to detect the tumor cells directly-potentially leading to better and earlier diagnosis of breast cancer.


This is just one of the potential biomedical applications of an emerging technique called phase-sensitive x-ray imaging. Normal x-ray pictures, such as those at dental offices, are “absorption-based” images: they rely upon the fact that the teeth absorb many more x-rays than the rest of the mouth. However, soft tissue does not absorb x-rays very well, making absorption imaging unsuited to the task of capturing the details of soft structures in such organs as the breast and kidney.

Optics researchers have long known that x-rays have the potential to make detailed images of soft biological tissue through a technique known as “phase” imaging. X-rays, a form of electromagnetic wave like light, can be visualized as a series of peaks and valleys like a water wave. When an x-ray encounters the boundary of two types of material, such as normal tissue and cancerous tissue, it will undergo a “phase shift”: the peak of the wave will move backward by a small amount relative to the position where it would be if there were no sample in the beam. By measuring the phase shifts as x-rays pass through the boundaries of different kinds of tissue, researchers can obtain detailed pictures of soft biological tissue.

In a demonstration that could bring this approach much closer to medical applications, a new phase-based imaging device combines three desirable attributes-compact size (only a few centimeters in length), large field of view (up to 20x20 cm^2), and the ability to use x-rays over a broad spectrum of energies. Crucially, the design uses a pair of gratings-each a thin slab of material with narrow, closely spaced parallel lines etched deeply into them, like little slits carved into the inch marks of a ruler.

In the setup, a stream of x-rays passes through the object to be imaged and it undergoes a series of phase shifts, which distorts the stream in a precise way. The distorted x-ray stream then passes through the first grating and is diffracted; the grating slices the x-ray stream into multiple waves that combine and interfere to produce a series of fringes (bright and dark stripes). The second grating extracts from this pattern precise information on the inner details of the object (see accompanying article for more information).

Using this technique, the researchers imaged a small spider, revealing internal structures that would be difficult to image with any other method. The researchers believe that the modest requirements of this technique, both in terms of x-ray source, laboratory space, and materials, may make phase-based imaging practical for a wide range of biological and medical applications.

| alfa
Further information:
http://www.opticsexpress.org

More articles from Physics and Astronomy:

nachricht Physicists discover that lithium oxide on tokamak walls can improve plasma performance
22.05.2017 | DOE/Princeton Plasma Physics Laboratory

nachricht Experts explain origins of topographic relief on Earth, Mars and Titan
22.05.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>