Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method for quantum cooling discovered

09.08.2005


Physicists at The University of Texas at Austin have discovered a new technique for cooling atoms and molecules that will allow them to study quantum physics more effectively with a greater variety of particles.



The researchers have found a way to use lasers to form walls that allow atoms and molecules to pass through in one direction, but do not allow them to return.

The technique could lead to advances in atomic clocks, which are used to standardize time worldwide.


Dr. Mark Raizen of the Center for Nonlinear Dynamics and his colleagues describe the one-way wall technique in Physical Review Letters and Europhysics Letters published earlier this year.

Raizen and his colleagues show that atoms and molecules can first be trapped in a box whose walls are built of laser light. The box can then be separated with an optical wall constructed of two lasers. These two lasers work in concert to allow atoms and molecules to pass through to one side of the box but block them from getting back to the other side. The box then has two distinct spaces, one filled with particles and one void of particles.

Raizen’s one-way wall extends the capabilities of laser and evaporative cooling, which have been limited to cooling a small number of atoms in the periodic table. The new method is applicable to a greater diversity of atoms and molecules and can expand the capability of researchers to test laws of quantum physics at extremely low temperatures.

“In nature, the cell wall is the classic example where atoms and molecules move through a one-way barrier,” Raizen said.

Cells regulate the flow of ions through one-way channels in order to create osmotic pressure. Raizen and his colleagues illustrate it is possible to create a manmade barrier to such atomic movement.

“The beauty of the one-way atomic wall,” Raizen said, “is that there is almost no increase in kinetic energy.”

With no increase in kinetic energy comes no increase in heat. By expanding and contracting the space that holds the trapped atoms and molecules, the temperature of this space, which Raizen calls a “quantum refrigerator,” can be lowered until it reaches very close to Absolute Zero.

It’s at these ultra cold temperatures, -459 degrees Fahrenheit, that quantum physicists can manipulate atoms and molecules.

For more information contact: Lee Clippard, College of Natural Sciences, 512-232-0675.

Lee Clippard | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Physics and Astronomy:

nachricht NASA laser communications to provide Orion faster connections
30.03.2017 | NASA/Goddard Space Flight Center

nachricht Pinball at the atomic level
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>