Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Back to Mars for the closest look yet

08.08.2005


In two days’ time [Wednesday 10th August] NASA will launch the biggest spacecraft ever to be sent to Mars - Mars Reconnaissance Orbiter (MRO). UK scientists are involved with MRO’s Mars Climate Sounder instrument that will profile the atmosphere of Mars. Additionally, MRO carries high resolution cameras to provide the most detailed picture yet of the Red Planet’s surface, including the potential to trace lost Mars missions such as the UK’s Beagle 2.



Scheduled for launch from Cape Canaveral on Wednesday 10th August (12.54hrs. BST; 07.54hrs. EDT) the prime objective of the mission is to determine the history of water on Mars. A suite of instruments will zoom-in to capture extreme close-up images of the Martian surface, analyse minerals, look for subsurface water, trace how much dust and water are distributed in the atmosphere and monitor the daily global weather.

UK scientists from Oxford, Cardiff and Reading Universities are involved in the Mars Climate Sounder (MCS) instrument – essentially a weather satellite for Mars. It will profile the atmosphere of Mars detecting vertical variation in temperature, dust and water vapour concentration.


Professor Fred Taylor from Oxford University is a co-investigator on the Mars Climate Sounder instrument has high hopes for the instrument. “No previous mission to Mars has carried a dedicated atmospheric sounder, capable of obtaining global profiles of the key meteorological variables with complete coverage and high vertical resolution.”

He adds, “We believe this will be the key to understanding the present climate regime on Mars much better. This in turn will be essential for future missions to the surface of the Red Planet - as payloads get larger, the atmospheric conditions for a successful landing become more critical. The Climate Sounder project will also lead to computer models of the Martian atmosphere of comparable complexity to those being used to study global warming on the Earth - an essential prerequisite to working backwards to understand why conditions on Mars changed so much, from warm and wet a billion years ago to the cold, dry desert we see today.”

With three state-of-the-art cameras onboard MRO will be able to take an unprecedented look at the surface of Mars – homing in like a microscope on specific features. The Hi-RISE camera will provide the most detailed pictures yet of the surface focusing on objects down to the size of a small table. This has raised the prospect that it could potentially look for signs of lost Mars missions, such as the UK built Beagle 2 Lander and NASA’s Mars Polar Lander.

Professor Colin Pillinger from the Open University, the Beagle 2 lead scientist, is optimistic about the possibility of tracing the Lander, which was last seen successfully spinning away from its mothership Mars Express in December 2003. Prof. Pillinger commented, “Rich Zurek, MRO’s project scientist, can both sympathise and empathise with the Beagle 2 team since he was project scientist for NASA’s Polar Lander mission which was also lost on Mars. He knows how much it would mean to us to find evidence of Beagle 2. If we could just see some trace of it on the surface then at least we could see how far it got – the not knowing is the worst bit! It will be a very difficult thing to do but this is our best chance of finding out what happened and we will be watching the progress of the mission with great interest and anticipation.”

Mars has been a prime focus for planetary exploration over the last decade with 8 missions since 1996. Of these NASA’s Mars Global Surveyor and Mars Odyssey, together with the European Space Agency’s [ESA] Mars Express, continue to research the Red Planet from orbit, whilst NASA’s Mars Exploration Rovers - Spirit and Opportunity – are still crawling over the Martian surface, far exceeding their original 3 month lifespan. Plans are already being developed for the next phase of Martian exploration involving more sophisticated missions including a Sample Return mission and the long-term prospect of sending humans to Mars. In Europe the proposed missions for ESA’s Aurora programme of planetary exploration, again focused on Mars, will be decided at the ESA Council meeting at Ministerial level in December 2005.

Dr Andrew Coates from UCL’s Mullard Space Science Laboratory, a co-investigator on the ASPERA instrument onboard ESA’s Mars Express, explains how the work of NASA’s MRO compliments that of Mars Express and, when combined, will pave the way for future exploration.

“Europe’s Mars Express has made several staggering discoveries including evidence for water-ice in a polar crater on the Martian surface; signs of a frozen sea near the equator; and has found tantalising evidence for methane in the atmosphere, created either by volcanism or from life. The spacecraft is also searching for water up to 5km below the Martian surface and is studying the escape of the Martian atmosphere into space”.

Dr. Coates added, “All this will be complimented by NASA’s MRO which, having the capabilities of a weather satellite, will profile the Martian atmosphere at unprecedented levels. Plus MRO carries very high resolution cameras to provide unmatched images of the Martian surface. When combined with the data from Mars Express we will have an incredibly detailed picture of Mars, its atmosphere and surface, including ideal sites for future Landers. Additionally, MRO could provide a communications channel to Earth for future European robotic surface missions like ExoMars - a key element of ESA’s Aurora programme of robotic exploration in which the UK hopes to be intimately involved”.

See notes to editors for a summary of how Mars Express and Mars Reconnaissance Orbiter compare.

Peter Barratt | alfa
Further information:
http://www.pparc.ac.uk

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>