Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mars Express radar collects first surface data

08.08.2005


MARSIS, the sounding radar on board ESA’s Mars Express spacecraft, is collecting the first data about the surface and the ionosphere of Mars.



The radar started its science operations on 4 July 2005, after the first phase of its commissioning was concluded on the same day. Due to the late deployment of MARSIS, it was decided to split the commissioning, originally planned to last four weeks, into two phases, one of which has just ended and the second one to be started by December this year.

This has given the instrument the chance to start scientific observations earlier than initially foreseen, while still in the Martian night. This is the environmental condition favourable to subsurface sounding, because the ionosphere is more ‘energised’ during the daytime and disturbs the radio signals used for subsurface observations.


From the beginning of the commissioning, the two 20-metre long antenna booms have been sending radio signals towards the Martian surface and receiving echoes back. “The commissioning phase confirmed that the radar is working very well, and that it can be operated at full power without interfering with any of the spacecraft systems,” says Roberto Seu, Instrument Manager for MARSIS, from the University of Rome ‘La Sapienza’, Italy.

An excellent test

MARSIS is a very complex instrument, capable of operating at different frequency bands. Lower frequencies are best suited to probe the subsurface and the highest frequencies are used to probe shallow subsurface depths, while all frequencies are suited to study the surface and the upper atmospheric layer of Mars.

“During the commissioning we have worked to test all transmission modes and optimise the radar performance around Mars,” says Prof. Giovanni Picardi, Principal Investigator for MARSIS, University of Rome ‘La Sapienza’. “The result is that since we have started the scientific observations in early July, we are receiving very clean surface echoes back, and first indication about the ionosphere.”

The MARSIS radar is designed to operate around the orbit ‘pericentre’, when the spacecraft is closer to the planet’s surface. In each orbit, the radar has been switched on for 36 minutes around this point, dedicating the central 26 minutes to subsurface observations and the first and last five minutes of the slot to active ionosphere sounding.

Using the lower frequencies, MARSIS has been mainly investigating on the northern flat areas between 30° and 70° latitudes, at all longitudes. “We are very satisfied about the way the radar is performing. In fact, the surface measurements taken so far match almost perfectly with the existing models of the Mars topography,” said Prof. Picardi. Thus, these measurements provided an excellent test.

The scientific reason to concentrate the first data analysis on flat regions lies in the fact that the subsurface layers here are in principle easier to identify, but the question is still tricky. “As the radar is appearing to work so well for the surface, we have good reasons to think that the radio waves are correctly propagating also below the surface,” added Prof. Picardi.

“The biggest part of our work just started, as we now have to be sure that we clearly identify and isolate those echoes that come from the subsurface. To do this, we have to carefully screen all data and make sure that signals that could be interpreted as coming from different underground layers are not actually produced by surface irregularities. This will keep us occupied for a few more weeks at least.”

Interesting preliminary findings

The first ionospheric measurements performed by MARSIS have also revealed some interesting preliminary findings. The radar responds directly to the number of charged particles composing the ionosphere (plasma). This has shown to be higher than expected at times.

“We are now analysing the data to find out if such measurements may result from sudden increases of solar activity, like the one observed on 14 July, or if we have to make new hypotheses. Only further analysis of the data can tell us,” said Jeffrey Plaut, Co-Principal Investigator, from NASA Jet Propulsion Laboratory, Pasadena, USA.

MARSIS will continue send signals to hit the surface and penetrate the subsurface until the middle of August, when the nighttime portion of the observations will have almost ended. After that, observation priority will be given to other Mars Express instruments that are best suited to work during daytime, such as the HRSC camera and the OMEGA mapping spectrometer.

However, MARSIS will continue surface and ionospheric investigations during daytime, with the ionospheric sounding being reserved for more than 20% percent of all Mars Express orbits, in all possible Sun illumination conditions.

In December 2005, the Mars Express orbit pericentre will enter the nighttime again. By then, the pericentre will have moved closer to the South pole, allowing MARSIS to restart optimal probing of the subsurface, this time in the southern hemisphere.

Franco Bonacina | alfa
Further information:
http://www.esa.int/esaCP/SEMQAN808BE_index_0.html

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>