Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mars Express radar collects first surface data

08.08.2005


MARSIS, the sounding radar on board ESA’s Mars Express spacecraft, is collecting the first data about the surface and the ionosphere of Mars.



The radar started its science operations on 4 July 2005, after the first phase of its commissioning was concluded on the same day. Due to the late deployment of MARSIS, it was decided to split the commissioning, originally planned to last four weeks, into two phases, one of which has just ended and the second one to be started by December this year.

This has given the instrument the chance to start scientific observations earlier than initially foreseen, while still in the Martian night. This is the environmental condition favourable to subsurface sounding, because the ionosphere is more ‘energised’ during the daytime and disturbs the radio signals used for subsurface observations.


From the beginning of the commissioning, the two 20-metre long antenna booms have been sending radio signals towards the Martian surface and receiving echoes back. “The commissioning phase confirmed that the radar is working very well, and that it can be operated at full power without interfering with any of the spacecraft systems,” says Roberto Seu, Instrument Manager for MARSIS, from the University of Rome ‘La Sapienza’, Italy.

An excellent test

MARSIS is a very complex instrument, capable of operating at different frequency bands. Lower frequencies are best suited to probe the subsurface and the highest frequencies are used to probe shallow subsurface depths, while all frequencies are suited to study the surface and the upper atmospheric layer of Mars.

“During the commissioning we have worked to test all transmission modes and optimise the radar performance around Mars,” says Prof. Giovanni Picardi, Principal Investigator for MARSIS, University of Rome ‘La Sapienza’. “The result is that since we have started the scientific observations in early July, we are receiving very clean surface echoes back, and first indication about the ionosphere.”

The MARSIS radar is designed to operate around the orbit ‘pericentre’, when the spacecraft is closer to the planet’s surface. In each orbit, the radar has been switched on for 36 minutes around this point, dedicating the central 26 minutes to subsurface observations and the first and last five minutes of the slot to active ionosphere sounding.

Using the lower frequencies, MARSIS has been mainly investigating on the northern flat areas between 30° and 70° latitudes, at all longitudes. “We are very satisfied about the way the radar is performing. In fact, the surface measurements taken so far match almost perfectly with the existing models of the Mars topography,” said Prof. Picardi. Thus, these measurements provided an excellent test.

The scientific reason to concentrate the first data analysis on flat regions lies in the fact that the subsurface layers here are in principle easier to identify, but the question is still tricky. “As the radar is appearing to work so well for the surface, we have good reasons to think that the radio waves are correctly propagating also below the surface,” added Prof. Picardi.

“The biggest part of our work just started, as we now have to be sure that we clearly identify and isolate those echoes that come from the subsurface. To do this, we have to carefully screen all data and make sure that signals that could be interpreted as coming from different underground layers are not actually produced by surface irregularities. This will keep us occupied for a few more weeks at least.”

Interesting preliminary findings

The first ionospheric measurements performed by MARSIS have also revealed some interesting preliminary findings. The radar responds directly to the number of charged particles composing the ionosphere (plasma). This has shown to be higher than expected at times.

“We are now analysing the data to find out if such measurements may result from sudden increases of solar activity, like the one observed on 14 July, or if we have to make new hypotheses. Only further analysis of the data can tell us,” said Jeffrey Plaut, Co-Principal Investigator, from NASA Jet Propulsion Laboratory, Pasadena, USA.

MARSIS will continue send signals to hit the surface and penetrate the subsurface until the middle of August, when the nighttime portion of the observations will have almost ended. After that, observation priority will be given to other Mars Express instruments that are best suited to work during daytime, such as the HRSC camera and the OMEGA mapping spectrometer.

However, MARSIS will continue surface and ionospheric investigations during daytime, with the ionospheric sounding being reserved for more than 20% percent of all Mars Express orbits, in all possible Sun illumination conditions.

In December 2005, the Mars Express orbit pericentre will enter the nighttime again. By then, the pericentre will have moved closer to the South pole, allowing MARSIS to restart optimal probing of the subsurface, this time in the southern hemisphere.

Franco Bonacina | alfa
Further information:
http://www.esa.int/esaCP/SEMQAN808BE_index_0.html

More articles from Physics and Astronomy:

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

nachricht NASA team finds noxious ice cloud on saturn's moon titan
19.10.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>