Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new spin on silicon

03.08.2005


’Orbitronics’ could keep silicon-based computing going after today’s technology reaches its limits



For about 40 years, the semiconductor industry has been able to continually shrink the electronic components on silicon chips, packing ever more performance into computers. Now, fundamental physical limits to current technology have the industry scouring the research world for an alternative. In a paper published in the Aug. 1 online edition of Physical Review Letters (PRL), Stanford University physicists present ’’orbitronics,’’ an alternative to conventional electronics that could someday allow engineers to skirt a daunting limit while still using cheap, familiar silicon.

’’The miniaturization of the present-day chips is limited by power dissipation,’’ says Shoucheng Zhang, a professor of physics, applied physics and, by courtesy, electrical engineering, who co-authored the PRL study. ’’Up to 40 percent of the power in circuits is being lost in heat leakage,’’ which he says will eventually make miniaturization a forbidding task.


Spintronics

In recent years, the search for an alternative to conventional semiconductors has resulted in the discovery of a nanotechnology called ’’spintronics,’’ which uses a property of electrons called ’’spin’’ to produce a novel kind of current that integrated circuits can process as information. Spin refers to how an electron rotates on its axis, similar to the rotation of the Earth. In 2003, Zhang and colleagues at the University of Tokyo showed that producing and manipulating a current of aligned electron spins with an electric field would not involve any losses to heat-a technique they called spintronics.

Zhang now co-directs the IBM-Stanford Spintronic Science and Applications Center, along with Stanford electrical engineering Professor James Harris and IBM research fellow Stuart Parkin. The center, established in 2004, is investigating many applications of spintronics, including room-temperature superconductors and quantum computers.

Playing the angles

For all its potential, a drawback of spintronics is that it doesn’t work very well with lighter atoms, such as silicon, which the microelectronics industry prefers. Enter Zhang’s new research. In the PRL paper, he and graduate students B. Andrei Bernevig and Taylor L. Hughes show how, in theory, silicon could be used in a related technology they dubbed orbitronics. By using orbitronics, Zhang says, computer chip makers could get the benefits of spintronics without having to abandon silicon.

Both orbitronics and spintronics involve a physical quantity called ’’angular momentum,’’ a property of any mass that moves around a fixed position, be it a tetherball or an electron.

Like an electric current, which is the flow of negatively charged electrons in a conventional integrated circuit, an orbital current would consist of a flow of electrons with their angular momenta aligned in an orbitronic circuit. ’’If you push electrons forward with an electric field, then an orbital current will be generated perpendicular to this electric current,’’ Zhang says. ’’It will not carry charge, but will carry orbital angular momentum perpendicular to the direction in which the electrons are moving.’’

Therefore, he explains, with orbitronics, silicon would still be able to provide a useful current with no losses to heat at room temperature. Some alternative technologies require cold temperatures that are difficult and expensive to maintain, he adds.

From theory to application

The authors point out that orbitronics still has a long way to go to become an applied technology in the semiconductor industry. ’’This is so new,’’ Zhang acknowledges. ’’When something is first discovered it is hard to say. There are many difficulties in the practical world.’’

Harris agrees, noting that spintronics will likely still take decades to become a mature commercial technology. ’’It’s not going to happen immediately, even if we are incredibly successful,’’ he says.

But if orbitronics turns out to indeed be an economically feasible technology to manufacture, it will be a boon to the industry to stick with silicon, Zhang says. ’’There is a huge, huge investment in processing silicon,’’ he says. ’’We don’t want to switch overnight to a new material.’’

Mark Shwartz | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>