Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optoelectronic integration overcoming processor bottlenecks

03.08.2005


One of the biggest obstacles facing computer systems today is the problem of memory latency, the time a computer must wait to access the data stored in memory despite faster processor speeds. Two demonstrators reveal that optoelectronics may offer solutions.



“Your domestic PC these days can have a processor of two GHz and faster – this is quite common – but the processor power will often be wasted because the real bottleneck in computer processing is the memory.” That is John Snowdon of Heriot-Watt University in Edinburgh, speaking about the objectives of the HOLMS project.

“Optoelectronic technologies are the only way to bridge the present gap between processor speed and memory bandwidth,” says John Snowdon of Heriot-Watt University in Edinburgh, of the HOLMS IST project. “This has been documented by the SIA, the Semiconductor Industry Association in the US.”


“Your domestic PC these days can have a processor of two GHz and faster – this is quite common – but the processor power will often be wasted because the real bottleneck in computer processing is the memory,” he says.

As a result participants in HOLMS set out to make the use of board-level optical interconnection in information systems practical and economical. They aimed to develop optoelectronic technology to the point where it would be compatible with standard electronic assembly processes. HOLMS focused on two key areas of optical technology: a seamless opto-mechanical interface to commercial parallel-fibre arrays, and low-cost optical waveguides that could be easily integrated into conventional printed circuit boards (PCBs).

“What is key about HOLMS is our work on optoelectronic packaging – how to make optoelectronic technologies more compatible with market and industry needs,” he continues. “We were able to take the signals from a fibre and push them into a high-bandwidth free-space optical connection, one which is capable of addressing many electronic processors simultaneously. So the latency is as low as you can get – essentially we’re working at light speed with many thousands of channels.”

The key achievement of HOLMS, believes Snowdon, was the project’s success in integrating fibre-optics with free-space technologies and optical PCBs – to form a powerful three-part optoelectronic interface. “We started from a pioneering research point-of-view, but with a commercial goal – that’s why we have so many industrial partners. This level of integration has not been achieved before outside the laboratory.”

HOLMS ends in September 2005, and the participants have developed two working demonstrators to show the functional aspects of the technology. The two main university partners, Hagen University (Germany) and Heriot-Watt, are both integrating the knowledge gained into their academic research.

Several of the industrial partners, including ILFA (PCB manufacturer) and Siemens of Germany, and Thales in France, have incorporated the results into their product development. Thales is investigating the potential of HOLMS’ optoelectronics technology for use in very-high-speed embedded systems in defence applications, while Siemens is believed to be developing a high-bandwidth optical waveguide PCB that could be on the market in as little as two years.

“It is the potential of this technology for the domestic markets that is so exciting,” says Snowdon. “This kind of technology could be built into the everyday PC within just two generations of development, which is no time at all.”

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Physics and Astronomy:

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

nachricht NASA team finds noxious ice cloud on saturn's moon titan
19.10.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>