Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optoelectronic integration overcoming processor bottlenecks

03.08.2005


One of the biggest obstacles facing computer systems today is the problem of memory latency, the time a computer must wait to access the data stored in memory despite faster processor speeds. Two demonstrators reveal that optoelectronics may offer solutions.



“Your domestic PC these days can have a processor of two GHz and faster – this is quite common – but the processor power will often be wasted because the real bottleneck in computer processing is the memory.” That is John Snowdon of Heriot-Watt University in Edinburgh, speaking about the objectives of the HOLMS project.

“Optoelectronic technologies are the only way to bridge the present gap between processor speed and memory bandwidth,” says John Snowdon of Heriot-Watt University in Edinburgh, of the HOLMS IST project. “This has been documented by the SIA, the Semiconductor Industry Association in the US.”


“Your domestic PC these days can have a processor of two GHz and faster – this is quite common – but the processor power will often be wasted because the real bottleneck in computer processing is the memory,” he says.

As a result participants in HOLMS set out to make the use of board-level optical interconnection in information systems practical and economical. They aimed to develop optoelectronic technology to the point where it would be compatible with standard electronic assembly processes. HOLMS focused on two key areas of optical technology: a seamless opto-mechanical interface to commercial parallel-fibre arrays, and low-cost optical waveguides that could be easily integrated into conventional printed circuit boards (PCBs).

“What is key about HOLMS is our work on optoelectronic packaging – how to make optoelectronic technologies more compatible with market and industry needs,” he continues. “We were able to take the signals from a fibre and push them into a high-bandwidth free-space optical connection, one which is capable of addressing many electronic processors simultaneously. So the latency is as low as you can get – essentially we’re working at light speed with many thousands of channels.”

The key achievement of HOLMS, believes Snowdon, was the project’s success in integrating fibre-optics with free-space technologies and optical PCBs – to form a powerful three-part optoelectronic interface. “We started from a pioneering research point-of-view, but with a commercial goal – that’s why we have so many industrial partners. This level of integration has not been achieved before outside the laboratory.”

HOLMS ends in September 2005, and the participants have developed two working demonstrators to show the functional aspects of the technology. The two main university partners, Hagen University (Germany) and Heriot-Watt, are both integrating the knowledge gained into their academic research.

Several of the industrial partners, including ILFA (PCB manufacturer) and Siemens of Germany, and Thales in France, have incorporated the results into their product development. Thales is investigating the potential of HOLMS’ optoelectronics technology for use in very-high-speed embedded systems in defence applications, while Siemens is believed to be developing a high-bandwidth optical waveguide PCB that could be on the market in as little as two years.

“It is the potential of this technology for the domestic markets that is so exciting,” says Snowdon. “This kind of technology could be built into the everyday PC within just two generations of development, which is no time at all.”

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Physics and Astronomy:

nachricht New type of smart windows use liquid to switch from clear to reflective
14.12.2017 | The Optical Society

nachricht New ultra-thin diamond membrane is a radiobiologist's best friend
14.12.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>