Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Optoelectronic integration overcoming processor bottlenecks


One of the biggest obstacles facing computer systems today is the problem of memory latency, the time a computer must wait to access the data stored in memory despite faster processor speeds. Two demonstrators reveal that optoelectronics may offer solutions.

“Your domestic PC these days can have a processor of two GHz and faster – this is quite common – but the processor power will often be wasted because the real bottleneck in computer processing is the memory.” That is John Snowdon of Heriot-Watt University in Edinburgh, speaking about the objectives of the HOLMS project.

“Optoelectronic technologies are the only way to bridge the present gap between processor speed and memory bandwidth,” says John Snowdon of Heriot-Watt University in Edinburgh, of the HOLMS IST project. “This has been documented by the SIA, the Semiconductor Industry Association in the US.”

“Your domestic PC these days can have a processor of two GHz and faster – this is quite common – but the processor power will often be wasted because the real bottleneck in computer processing is the memory,” he says.

As a result participants in HOLMS set out to make the use of board-level optical interconnection in information systems practical and economical. They aimed to develop optoelectronic technology to the point where it would be compatible with standard electronic assembly processes. HOLMS focused on two key areas of optical technology: a seamless opto-mechanical interface to commercial parallel-fibre arrays, and low-cost optical waveguides that could be easily integrated into conventional printed circuit boards (PCBs).

“What is key about HOLMS is our work on optoelectronic packaging – how to make optoelectronic technologies more compatible with market and industry needs,” he continues. “We were able to take the signals from a fibre and push them into a high-bandwidth free-space optical connection, one which is capable of addressing many electronic processors simultaneously. So the latency is as low as you can get – essentially we’re working at light speed with many thousands of channels.”

The key achievement of HOLMS, believes Snowdon, was the project’s success in integrating fibre-optics with free-space technologies and optical PCBs – to form a powerful three-part optoelectronic interface. “We started from a pioneering research point-of-view, but with a commercial goal – that’s why we have so many industrial partners. This level of integration has not been achieved before outside the laboratory.”

HOLMS ends in September 2005, and the participants have developed two working demonstrators to show the functional aspects of the technology. The two main university partners, Hagen University (Germany) and Heriot-Watt, are both integrating the knowledge gained into their academic research.

Several of the industrial partners, including ILFA (PCB manufacturer) and Siemens of Germany, and Thales in France, have incorporated the results into their product development. Thales is investigating the potential of HOLMS’ optoelectronics technology for use in very-high-speed embedded systems in defence applications, while Siemens is believed to be developing a high-bandwidth optical waveguide PCB that could be on the market in as little as two years.

“It is the potential of this technology for the domestic markets that is so exciting,” says Snowdon. “This kind of technology could be built into the everyday PC within just two generations of development, which is no time at all.”

Tara Morris | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>