Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moving Closer to the Grand Spiral

02.08.2005


VLT Enables Most Accurate Distance Measurement to Spiral Galaxy NGC 300



An international team of astronomers from Chile, Europe and North America [1] is announcing the most accurate distance yet measured to a galaxy beyond our Milky Way’s close neighbours. The distance was determined using the brightness variation of a type of stars known as "Cepheid variables".

The team used the ISAAC near-infrared camera and spectrometer on ESO’s 8.2-m VLT Antu telescope to obtain deep images in the near-infrared of three fields in the spiral galaxy NGC 300. Together these fields contain 16 long-period Cepheids. These stars had previously been discovered by the team in a wide-field imaging survey of this galaxy conducted with the Wide Field Imager (WFI) camera on the ESO/MPG 2.2-m telescope at La Silla.


The spiral galaxy NGC 300 is a beautiful representative of its class, a Milky-Way-like member of the prominent Sculptor group of galaxies in the southern constellation of the same name.

The astronomers derive a distance to NGC 300 of a little above 6 million light-years [2]. "The VLT data have led to accurate period-luminosity relations in the J- and K- bands, allowing us to determine the distance to NGC 300 with an unprecedented uncertainty of only three percent", says Wolfgang Gieren, of the University of Concepcion (Chile) and leader of the team. One of the reasons for this high accuracy was the opportunity to precisely combine the new near-infrared ISAAC data with the previous optical WFI data.

Cepheid variables constitute a key element in the measurement of distances in the Universe. It has been known for many years that the pulsation period of a Cepheid-type star depends on its intrinsic brightness (its "luminosity"). Thus, once its period has been measured, the astronomers can calculate its luminosity. By comparing this to the star’s apparent brightness in the sky, they can obtain the distance to the star. This fundamental method has allowed some of the most reliable measurements of distances in the Universe and has been essential for all kinds of astrophysics, from the closest stars to the remotest galaxies.

This first Cepheid distance based on near-infrared imaging with the Very Large Telescope is a milestone in the team’s Araucaria Project in which they seek to improve the local calibration of the distance scale with stellar standard candles, including Cepheid variables, by determining precisely how these standard candles depend on a galaxy’s properties, such as its content in chemical elements and age.

Henri Boffin | alfa
Further information:
http://www.eso.org/outreach/press-rel/pr-2005/pr-20-05.html

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>