Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UA team heads for launch of mars reconnaissance orbiter and hirise

02.08.2005


NASA plans to launch a new orbiter called Mars Reconnaissance Orbiter (MRO) on Aug. 10 as the next step in its ambitious Mars exploration program.

MRO will return more data about the red planet than all previous Mars missions combined, according to the U.S. space agency. More than 40 University of Arizona researchers, family members and friends leave for NASA’s Kennedy Space Center in Florida next week to cheer the launch. The soon-to-fly orbiter payload includes UA’s High Resolution Imaging Science Experiment (HiRISE) -- the largest-diameter telescopic camera ever sent to another planet.

"HiRISE is going to both resolve old mysteries and raise new questions about Mars," said HiRISE principal investigator Alfred S. McEwen of UA’s Lunar and Planetary Laboratory. "It’s also going to address specific questions related to future Mars exploration."

HiRISE, two other cameras, a spectrometer, a radar instrument and a radiometer aboard MRO will examine Mars from the top of its atmosphere to its underground layers. Scientists will use MRO to study the history and distribution of martian water, characterize landing sites for future missions -- including UA’s 2007 Phoenix Mission to Mars -- and provide a high-data-rate communications relay between Mars lander missions and Earth. Professor McEwen and his team will plan HiRISE observations, upload commands, monitor instrument performance, retrieve, process and analyze image data at the HiRISE Operations Center, called "HiROC," located in the Lunar and Planetary Lab’s Sonett Building on the UA campus in Tucson.

"The HiRISE team is more than excited to see the successful launch of MRO," HiRISE co-investigator and HiROC manager Eric Eliason said. " We’ve invested a lot of hard work to ensure HiRISE is the best possible camera for this mission. We’ve been practicing and rehearsing how to command our instrument. We’ve been developing software to process and analyze returned images and now we’re looking forward to finally having some real images of Mars."

The 145-pound (65 kg) HiRISE camera - the largest instrument on the MRO payload - features a 20-inch (half-meter) primary mirror - the largest on any telescope ever sent beyond Earth orbit. HiRISE will take ultra-sharp photographs over 3.5-mile (6 kilometer) swaths of the martian landscape, resolving rocks and other geologic features as small as 40 inches (one meter) across. It will take pictures in stereo and color, too, while it zooms along at more than 7,800 mph (3 and 1/2 km per second) about 190 miles (300 km) above Mars’ surface.

"HiRISE is capable of getting such views over any selected region of Mars, providing a bridge between orbital remote sensing and landed missions," McEwen said. MRO’s planned orbit is more than 20 percent lower than the average for any of the three current Mars orbiters, which are NASA’s Mars Odyssey and Mars Global Surveyor, and the European Space Agency’s Mars Express. Low orbit is an advantage when it comes to seeing Mars at higher resolution than ever before.

The orbiter will reach Mars in March 2006. The spacecraft will gradually adjust its elliptical orbit to a circular orbit by aerobraking, a technique that creates drag using the friction of careful dips into the planet’s upper atmosphere. MRO’s 25-month primary science phase begins in November 2006. HiROC researchers say they expect to process 1,000 gigantic high-resolution images and 9,000 smaller high-resolution images during the science phase of the MRO mission.

"These are huge images, and we’ve been developing techniques to deal with images as large as 20,000 pixels wide and 60,000 pixels long," McEwen said. It would take 1,200 typical computer screens to display all of a large HiRISE image at full resolution. HiROC will acquire a large-format printer for making photographs up to five feet wide and 10-to-15 feet long, McEwen added. The HiRISE team has also been developing HiWeb, an Internet site that expert Mars scientists and the general public worldwide can use to suggest HiRISE imaging targets. HiRISE is called "the people’s camera" because anyone can suggest places on Mars for HiRISE to photograph and because the images will be made publicly available as soon as possible.

Operations staff member Ingrid Daubar and senior software developer Christian Schaller suggested a people-friendly metaphor for what they will do at HiROC. "Basically, you can think of what we do as aiming and focusing the HiRISE camera, pushing the button to take a picture, downloading the pictures to our computers and then processing the pictures," Daubar said. "Of course, it’s really much more complicated than that." The first milestone after launch will be when McEwen and the HiRISE team make their first observations of actual targets in the solar system on Sept. 8, 2005. They have targeted Earth’s moon and the Omega Centauri star cluster to calibrate HiRISE and check its in-flight performance. It may take several days for the big images to arrive at HiROC.

What will HiRISE look at first when the science mission begins in November 2006?

First planned targets include candidate landing sites for the 2007 Phoenix Mission to Mars, led by Peter Smith of UA’s Lunar and Planetary Laboratory. "We actually have only a limited time before winter arrives at Mars’ north pole and lighting conditions deteriorate, so we want to do that quickly," McEwen said.

And if Spirit and Opportunity are still roving, photographing the Mars Expedition Rover landing sites is very high priority, McEwen said. Views of past Mars mission landing sites -- the successful Pathfinder and Viking missions, and possibly the unsuccessful Mars Polar Lander and Beagle 2 landing sites -- are also of interest, he added. Then HiRISE will tackle a huge list of science priorities, McEwen said. MRO weighs more than two tons fully fueled. To loft so big a spacecraft, NASA will use a powerful Atlas V launch vehicle for the first time on an interplanetary mission.

The mission is managed by the Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, for the NASA Science Mission Directorate. Lockheed Martin Space Systems, Denver, is the prime contractor for the project and built the spacecraft. Ball Aerospace & Technologies Corp. of Boulder, Colo., designed, built and tested the $40 million HiRISE camera.

Alfred S. McEwen | University of Arizona
Further information:
http://hirise.lpl.arizona.edu
http://mars.jpl.nasa.gov/mro/

More articles from Physics and Astronomy:

nachricht Breaking the optical bandwidth record of stable pulsed lasers
24.01.2017 | Institut national de la recherche scientifique - INRS

nachricht European XFEL prepares for user operation: Researchers can hand in first proposals for experiments
24.01.2017 | European XFEL GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>