Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Detecting the Traces of Mystery Matter


A splash of subatomic particles is created by the collision of gold atom nuclei traveling at nearly the speed of light in Brookhaven National Laboratory’s Relativistic Heavy Ion Collider. (Brookhaven National Laboratory/STAR Collaboration/courtesy graph)

Using high-speed collisions between gold atoms, scientists think they have re-created one of the most mysterious forms of matter in the universe -- quark-gluon plasma. This form of matter was present during the first microsecond of the Big Bang and may still exist at the cores of dense, distant stars.

UC Davis physics professor Daniel Cebra is one of 543 collaborators on the research. His main role was building the electronic listening devices that collect information about the collisions, a job he compared to "troubleshooting 120,000 stereo systems."

Now, using those detectors, "we look for trends in what happened during the collision to learn what the quark-gluon plasma is like," he said. "We have been trying to melt neutrons and protons, the building blocks of atomic nuclei, into their constituent quarks and gluons," Cebra said. "We needed a lot of heat, pressure and energy, all localized in a small space."

The scientists produced the right conditions with head-on collisions between the nuclei of gold atoms. The resulting quark-gluon plasma lasted an extremely short time -- less than 10-20 seconds, Cebra said. But the collision left tracings that the scientists could measure.

"Our work is like accident reconstruction," Cebra said. "We see fragments coming out of a collision, and we construct that information back to very small points."

Quark-gluon plasma was expected to behave like a gas, but the data shows a more liquid-like substance. The plasma is less compressible than expected, which means that it may be able to support the cores of very dense stars.

"If a neutron star gets large and dense enough, it may go through a quark phase, or it may just collapse into a black hole," Cebra said. "To support a quark star, the quark-gluon plasma would need rigidity. We now expect there to be quark stars, but they will be hard to study. If they exist, they’re semi-infinitely far away."

The project is led by Brookhaven National Laboratory and Lawrence Berkeley National Laboratory, with collaborators at 52 institutions worldwide. The work was done in Brookhaven’s Relativistic Heavy Ion Collider (RHIC).

Andy Fell | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.

24.10.2016 | Life Sciences

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

More VideoLinks >>>