Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Russian Titanium

01.08.2005


The situation regarding titanium is paradoxical. On the one hand, titanium is found in abundance in the natural environment: in terms of natural occurrence in the earth’s crust, the element is the third among all metals, directly following iron and aluminium. In industry, particularly in metallurgy it is used very rarely, about one hundred times less than aluminium. This happens in spite of the outstanding properties of titanium: it is lightweight, fast, heatproof and chemically stable. But it is too expensive as it is very difficult to extract it from minerals, and the raw materials for its production are extremely expensive.



It came to having to purchase titanium dioxide from abroad. It is used as a basis for titanium white, and the production of plastics, paper and even cosmetics. There are enough deposits in Russia; the problem is that Russia has not yet managed to establish the production of high-quality raw titanium.

This stumbling block will probably be removed soon with the help of the technology developed in the Baikov Institute of Metallurgy and Material Authority, Russian Academy of Sciences(IMET RAS), in the laboratory of Professor Reznichenko by G.B. Sadykhov, Doctor of Science (Engineering).


The rutile mineral is found in nature, it mainly consists of titanium dioxide. The researchers suggest that rutile should be educed from the so-called leucoxene petroliferous sandstones of the Yaregskoye deposit, which was previously considered absolutely hopeless for obtaining titanium dioxide.

The method of production is as follows: first, it is necessary to get rid of mineral oil the sandstone is imbued with. This mineral oil has been distilled off from Yaregsky sandstone by heating it without air. Then, the sandstone is heated once again; this changes its structure. The sandstone initially consists of over half ordinary sand, i.e. silicon dioxide - quartz. The latter is distributed irregularly: there are large agglomerates, and some agglomerates are as if ingrown in the rutile structure, they are the most difficult to get rid of. As a result of thermal treatment, the silicon dioxide structure changes, and it becomes much more active.

Strange as it may seem, rutile acquires ferromagnetic properties and starts to be pulled to the magnet. The researchers do not yet know for sure the reason for this happening, so far there is only a hypothesis that this is connected with minor iron admixtures. Finding out the reasons for this phenomenon is the subject of further research. However, the phenomenon has been persistently proved experimentally and it allows to separate rutile from quartz. As for silicon dioxide remaining with rutile in thin conglutination, it is much easier to remove – it is washed out of rutile by alkali solution.

As a result, the researchers manage (so far, only in a laboratory environment) to educe practically all titanium dioxide from ore, i.e., 90 to 95 percent of the initial content, and such synthetic rutile proves practically pure: it contains more than 90 percent of titanium dioxide and less than three percent of silicon dioxide. It is pure pleasure to get titanium white from such rutile.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Physics and Astronomy:

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

nachricht Large, distant comets more common than previously thought
26.07.2017 | University of Maryland

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>