Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Russian Titanium

01.08.2005


The situation regarding titanium is paradoxical. On the one hand, titanium is found in abundance in the natural environment: in terms of natural occurrence in the earth’s crust, the element is the third among all metals, directly following iron and aluminium. In industry, particularly in metallurgy it is used very rarely, about one hundred times less than aluminium. This happens in spite of the outstanding properties of titanium: it is lightweight, fast, heatproof and chemically stable. But it is too expensive as it is very difficult to extract it from minerals, and the raw materials for its production are extremely expensive.



It came to having to purchase titanium dioxide from abroad. It is used as a basis for titanium white, and the production of plastics, paper and even cosmetics. There are enough deposits in Russia; the problem is that Russia has not yet managed to establish the production of high-quality raw titanium.

This stumbling block will probably be removed soon with the help of the technology developed in the Baikov Institute of Metallurgy and Material Authority, Russian Academy of Sciences(IMET RAS), in the laboratory of Professor Reznichenko by G.B. Sadykhov, Doctor of Science (Engineering).


The rutile mineral is found in nature, it mainly consists of titanium dioxide. The researchers suggest that rutile should be educed from the so-called leucoxene petroliferous sandstones of the Yaregskoye deposit, which was previously considered absolutely hopeless for obtaining titanium dioxide.

The method of production is as follows: first, it is necessary to get rid of mineral oil the sandstone is imbued with. This mineral oil has been distilled off from Yaregsky sandstone by heating it without air. Then, the sandstone is heated once again; this changes its structure. The sandstone initially consists of over half ordinary sand, i.e. silicon dioxide - quartz. The latter is distributed irregularly: there are large agglomerates, and some agglomerates are as if ingrown in the rutile structure, they are the most difficult to get rid of. As a result of thermal treatment, the silicon dioxide structure changes, and it becomes much more active.

Strange as it may seem, rutile acquires ferromagnetic properties and starts to be pulled to the magnet. The researchers do not yet know for sure the reason for this happening, so far there is only a hypothesis that this is connected with minor iron admixtures. Finding out the reasons for this phenomenon is the subject of further research. However, the phenomenon has been persistently proved experimentally and it allows to separate rutile from quartz. As for silicon dioxide remaining with rutile in thin conglutination, it is much easier to remove – it is washed out of rutile by alkali solution.

As a result, the researchers manage (so far, only in a laboratory environment) to educe practically all titanium dioxide from ore, i.e., 90 to 95 percent of the initial content, and such synthetic rutile proves practically pure: it contains more than 90 percent of titanium dioxide and less than three percent of silicon dioxide. It is pure pleasure to get titanium white from such rutile.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>