Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cassini confirms a dynamic atmosphere at Saturn’s moon Enceladus


The latest close flyby of Saturn’s icy moon Enceladus by NASA’s Cassini spacecraft confirms that the moon has a significant, extended and dynamic atmosphere. The flyby, which took place on 14th July 2005, was Cassini’s lowest altitude flyby of any object to date, a mere 173 kilometres (108 miles) above the surface of Enceladus.

The 500 km diameter moon Enceladus is a very bright icy moon at a distance of 4 Saturn radii away from Saturn. It has long been associated with the formation of the E ring, Saturn’s outermost ring. The first two more distant flybys of Enceladus on February 17th at an altitude of 1,167 kilometres (725 miles), and on March 9th, 500 kilometres (310 miles) above Enceladus’ surface had shown draping or bending of the magnetic field around the moon, revealing that Enceladus was acting as a large obstacle to the flow of plasma and magnetic field from Saturn by its extended asymmetric atmosphere.

The recent close flyby confirms and extends the observations from the two more distant flybys which took place earlier this year. Although no other instruments on the Cassini spacecraft had detected evidence of this atmosphere on the first two flybys, on the basis of the magnetometer [MAG] instrument observations alone a decision was made to modify the spacecraft trajectory for the 14th July encounter to fly much closer to the surface of Enceladus.

Professor Michele Dougherty from Imperial College London, who is Principal Investigator on the Magnetometer instrument on Cassini, says “These latest observations are very exciting, they confirm the existence of an atmosphere which we predicted from the distant earlier flybys and they will also allow us to gain a much better understanding of the processes taking place which are producing this very exotic atmosphere.”

Observations from numerous instruments now confirm what MAG was able to see from a great distance. Not only is the magnetic field even more strongly bent around the atmospheric obstacle connected to the moon but the other instruments also detected the presence of the atmosphere. The magnetic data also suggests that the atmosphere is not symmetric and may be arising from a comet-like jet from the southern hemisphere. Also the spacecraft passed right through the electric current carrying region associated with the atmospheric interaction.

Gill Ormrod | alfa
Further information:

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>