Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Develops a Nugget to Search for Life in Space

28.07.2005


Astrobiologists, who search for evidence of life on other planets, may find a proposed Neutron/Gamma ray Geologic Tomography (NUGGET) instrument to be one of the most useful tools in their toolbelt.

As conceived by scientists at the Goddard Space Flight Center (GSFC) in Greenbelt, Md., NUGGET would be able to generate three-dimensional images of fossils embedded in an outcrop of rock or beneath the soil of Mars or another planet. Tomography uses radiation or sound waves to look inside objects. NUGGET could help determine if primitive forms of life took root on Mars when the planet was awash in water eons ago.

Similar to seismic tomography used by the oil industry to locate oil reserves beneath Earth’s surface, NUGGET would look instead for evidence of primitive algae and bacteria that fossilized along the edges of extinct rivers or oceans. As on Earth, these remains could lie just a few centimeters beneath the surface, compressed between layers of silt. If a mechanical rover that explores planet surfaces were equipped with an instrument like NUGGET — capable of peering beneath the surface — then it might be able to reveal evidence of life beyond Earth.



“This is a brand new idea,” said Sam Floyd, the principal investigator on the project, funded this year by Goddard’s Director’s Discretionary Fund. If developed, NUGGET would be able to investigate important biological indicators of life, and quickly and precisely identify areas where scientists might want to take samples of soil or conduct more intensive studies. “It would allow us to do a much faster survey of an area,” Floyd said.

The proposed instrument, which could be carried on a rover or a robot lander, is made up of three fundamentally distinct technologies — a neutron generator, a neutron lens, and a gamma-ray detector.

At the heart of NUGGET is a three-dimensional scanning instrument that beams neutrons into a rock or other object under study. When the nucleus of an atom inside the rock captures the neutrons, it produces a characteristic gamma-ray signal for that element, which the gamma-ray detector then analyzes. It’s also possible to plot the location of the elements.

After this process, information can then be turned into an image of the elements within the rock. By seeing images of certain existing elements, scientists could tell whether a certain type of bacteria had become fossilized inside the rock.

Although the concept of focusing neutrons is not new, the ability to focus them is. Thanks to a Russian scientist who devised the method in the 1980s, scientists today can direct a beam of neutrons through a neutron lens made up of the thousands of long, slender, hair-size glass tubes. The bundle of tubes is shaped so that the neutrons flowing down them can converge at a central point. Since the method’s invention in the 1980s, manufacturing practices have made this type of optical system feasible for space exploration.

The advantage of this technology is that it can create a higher intensity of neutrons at a central point on the object. This increased intensity allows a higher-resolution image to be produced.

Floyd and his co-investigators, Jason Dworkin, John Keller, and Scott Owens, all from NASA GSFC, plan to conduct experiments this summer at the National Institute of Standards and Technology (NIST) using one of NIST’s neutron-beam lines. By focusing neutrons into various samples (one of which is a meteorite), they hope to make a three-dimensional image of the meteorite’s internal structure.

“If we’re successful, we’ll be in position to say whether a space flight instrument is feasible,” Floyd said, adding that his research should give Goddard the lead role in developing a new class of instruments to support missions for NASA’s search of life in the future.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov/vision/earth/technologies/nuggets.html
http://www.nasa.gov/goddard

More articles from Physics and Astronomy:

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

nachricht Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials
17.01.2018 | Universität des Saarlandes

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

More genes are active in high-performance maize

19.01.2018 | Life Sciences

How plants see light

19.01.2018 | Life Sciences

Artificial agent designs quantum experiments

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>