Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Develops a Nugget to Search for Life in Space

28.07.2005


Astrobiologists, who search for evidence of life on other planets, may find a proposed Neutron/Gamma ray Geologic Tomography (NUGGET) instrument to be one of the most useful tools in their toolbelt.

As conceived by scientists at the Goddard Space Flight Center (GSFC) in Greenbelt, Md., NUGGET would be able to generate three-dimensional images of fossils embedded in an outcrop of rock or beneath the soil of Mars or another planet. Tomography uses radiation or sound waves to look inside objects. NUGGET could help determine if primitive forms of life took root on Mars when the planet was awash in water eons ago.

Similar to seismic tomography used by the oil industry to locate oil reserves beneath Earth’s surface, NUGGET would look instead for evidence of primitive algae and bacteria that fossilized along the edges of extinct rivers or oceans. As on Earth, these remains could lie just a few centimeters beneath the surface, compressed between layers of silt. If a mechanical rover that explores planet surfaces were equipped with an instrument like NUGGET — capable of peering beneath the surface — then it might be able to reveal evidence of life beyond Earth.



“This is a brand new idea,” said Sam Floyd, the principal investigator on the project, funded this year by Goddard’s Director’s Discretionary Fund. If developed, NUGGET would be able to investigate important biological indicators of life, and quickly and precisely identify areas where scientists might want to take samples of soil or conduct more intensive studies. “It would allow us to do a much faster survey of an area,” Floyd said.

The proposed instrument, which could be carried on a rover or a robot lander, is made up of three fundamentally distinct technologies — a neutron generator, a neutron lens, and a gamma-ray detector.

At the heart of NUGGET is a three-dimensional scanning instrument that beams neutrons into a rock or other object under study. When the nucleus of an atom inside the rock captures the neutrons, it produces a characteristic gamma-ray signal for that element, which the gamma-ray detector then analyzes. It’s also possible to plot the location of the elements.

After this process, information can then be turned into an image of the elements within the rock. By seeing images of certain existing elements, scientists could tell whether a certain type of bacteria had become fossilized inside the rock.

Although the concept of focusing neutrons is not new, the ability to focus them is. Thanks to a Russian scientist who devised the method in the 1980s, scientists today can direct a beam of neutrons through a neutron lens made up of the thousands of long, slender, hair-size glass tubes. The bundle of tubes is shaped so that the neutrons flowing down them can converge at a central point. Since the method’s invention in the 1980s, manufacturing practices have made this type of optical system feasible for space exploration.

The advantage of this technology is that it can create a higher intensity of neutrons at a central point on the object. This increased intensity allows a higher-resolution image to be produced.

Floyd and his co-investigators, Jason Dworkin, John Keller, and Scott Owens, all from NASA GSFC, plan to conduct experiments this summer at the National Institute of Standards and Technology (NIST) using one of NIST’s neutron-beam lines. By focusing neutrons into various samples (one of which is a meteorite), they hope to make a three-dimensional image of the meteorite’s internal structure.

“If we’re successful, we’ll be in position to say whether a space flight instrument is feasible,” Floyd said, adding that his research should give Goddard the lead role in developing a new class of instruments to support missions for NASA’s search of life in the future.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov/vision/earth/technologies/nuggets.html
http://www.nasa.gov/goddard

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>