Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cassini finds recent, unusual geology on Enceladus

27.07.2005


New detailed images taken by NASA’s Cassini spacecraft of the south polar region of Saturn’s moon Enceladus reveal distinctive geological features, and the most youthful terrains of any seen on Enceladus. These findings point to a very complex evolutionary history for Saturn’s brightest, whitest world.



Cassini’s flyby on July 14 brought it within 175 kilometers (109 miles) of the surface of the icy moon. The close encounter revealed a landscape near the south pole littered with house-sized ice boulders, carved by tectonic patterns unique to Enceladus, and almost entirely free of impact craters. These features set the southerly region apart from the rest of the moon.

The new image products can be seen at http://ciclops.org, http://saturn.jpl.nasa.gov and http://www.nasa.gov/cassini.


As white as fresh snow, Enceladus (505 kilometers, 314 miles across) has the most reflective surface in the solar system. Previous Cassini flybys have revealed that Enceladus, in contrast to the other icy moons of Saturn, possesses lightly cratered regions, fractured plains and wrinkled terrain.

The new findings add to the story of a body that has undergone multiple episodes of geologic activity spanning a considerable fraction of its lifetime, and whose southern-most latitudes have likely seen the most recent activity of all. These same latitudes may also bear the scars of a shift in the moon’s rate of spin. This speculation which, if true, may help scientists understand why Enceladus has a tortured looking surface, with pervasive crisscrossing faults, folds and ridges.

The most remarkable images show ice blocks, about 10 to 100 meters (33 to 328 feet) across, lying in a region that is unusual in its lack of the very fine-grained frost that seems to cover the rest of Enceladus.

"A landscape littered with building-sized blocks was not expected," said Dr. Peter Thomas, an imaging team member from Cornell University, Ithaca, N.Y. "The minimal cover of finer material and the preservation of small, crossing fracture patterns in the surrounding areas indicate that this region is young compared to the rest of Enceladus."

False color composites of this region, created from the most recent images, show the largest exposures of coarse-grained ice fractures seen anywhere on the satellite. It also supports the notion of a young surface at southern latitudes.

"These southern exposures of coarse-grained ice are aligned with tectonic "stripes" and not covered by the fine-grained materials that one would expect from various space weathering processes," said Dr. Alfred McEwen, an Imaging Team member at the University of Arizona, Tucson.

The apparent absence of sizable impact craters also suggests that the south pole is younger than other terrains on Enceladus. These indications of youth are of great interest to scientists who have long suspected Enceladus as one possible source of material for Saturn’s extensive and diffuse E ring, which coincides with the icy moon’s orbit. Young surfaces represent a challenge as it has generally been believed that Enceladus is too small and too cold to generate the heat required to modify its surface.

Some of the latest images, which have revealed additional examples of a distinctive "Y-shaped" tectonic feature on Enceladus in which parallel ridges and valleys appear to systematically fold and deform around the south polar terrains, may hint at the answer.

"These tectonic features define a boundary that isolates the young, south polar terrains from older terrains on Enceladus," noted Dr. Paul Helfenstein, an associate of the Imaging Team also at Cornell University. "Their placement and orientation may tell us a very interesting story about the way the rotation of Enceladus has evolved over time and what might have provided the energy to power the geologic activity that has wracked this moon."

Cassini will explore Enceladus further in a future close flyby planned for March 2008.

Preston Dyches | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>