Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists entangle photon and atom in atomic cloud

26.07.2005


Quantum communication networks show great promise in becoming a highly secure communications system. By carrying information with photons or atoms, which are entangled so that the behavior of one affects the other, the network can easily detect any eavesdropper who tries to tap the system.

Physicists at the Georgia Institute of Technology have just reached an important milestone in the development of these systems by entangling a photon and a single atom located in an atomic cloud. Researchers believe this is the first time an entanglement between a photon and a collective excitation of atoms has passed the rigorous test of quantum behavior known as a Bell inequality violation. The findings are a significant step in developing secure long-distance quantum communications. They appear in the July 29, 2005 edition of the Physical Review of Letters.

Relying on photons or atoms to carry information from one place to another, network security relies on a method known as quantum cryptographic key distribution. In this method, the two information-carrying particles, photonic qubits or atomic qubits, are entangled. Because of the entanglement and a rule in quantum physics that states that measuring a particle disturbs that particle, an eavesdropper would be easily detected because the very act of listening causes changes in the system.



But many challenges remain in developing these systems, one of which is how to get the particles to store information long enough and travel far enough to get to their intended destination. Photonic qubits are great carriers and can travel for long distances before being absorbed into the conduit, but they’re not so great at storing the information for a long time. Atomic qubits, on the other hand, can store information for much longer. So an entangled system of atoms and photons offers the best of both worlds. The trick is how to get them entangled in a simple way that requires the least amount of hardware.

Physicists Alex Kuzmich and Brian Kennedy think that taking a collective approach is the way to go. Instead of trying to isolate an atom to get it into the excited state necessary for it to become entangled with a photon, they decided to try to excite an atom in a cloud of atoms.

“Using a collective atomic qubit is much simpler than the single atom approach,” said Kuzmich, assistant professor of physics at Georgia Tech. “It requires less hardware because we don’t have to isolate an atom. In fact, we don’t even know, or need to know, which atom in the group is the qubit. We can show that the system is entangled because it violates Bell inequality.”

“With single atoms, its much more difficult to control the system because there is so much preparation that must be done,” said Kennedy, professor of physics at Georgia Tech. “For the collective excitation, the initial preparation of the atoms is minimal. You don’t have to play too much with their internal state – something that’s usually a huge concern.”

In addition to having the system pass the rigorous test of Bell inequality, researchers said they were able to increase the amount of time the atomic cloud can store information to several microseconds. That’s fifty times longer than it takes to prepare and measure the atom-photon entanglement.

Another challenge of quantum communication networks is that since photons can only travel so far before they get absorbed into the conduit, the network has to be built in nodes with a repeater at each connection.

“A very important step down the road would be to put systems like this together and confirm they are behaving in a quantum mechanical way,” said Kennedy.

David Terraso | EurekAlert!
Further information:
http://www.icpa.gatech.edu

More articles from Physics and Astronomy:

nachricht Writing and deleting magnets with lasers
19.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Ultrafast electron oscillation and dephasing monitored by attosecond light source
19.04.2018 | Yokohama National University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>