Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT-Williams team catches rare light show

21.07.2005


Pluto’s moon hides a star



In a feat of astronomical and terrestrial alignment, a group of scientists from MIT (Cambridge, Mass.) and Williams College (Williamstown, Mass.) recently succeeded in observing distant Pluto’s tiny moon, Charon, hide a star. Such an event had been seen only once before, by a single telescope 25 years ago, and then not nearly as well. The MIT-Williams consortium spotted it with four telescopes in Chile on the night of July 10-11.

In addition to assessing whether Charon has an atmosphere, the team expects to get a new, accurate value for Charon’s radius and determine how round it is. The team had more than 100 square meters (about 1,000 square feet) of telescope surface facing Charon, Pluto and the star beyond them-a noticeable fraction of the world’s total telescope area.


The data and results from the recent observation will be presented at the 2005 meeting of the American Astronomical Society’s Division of Planetary Sciences meeting to be held in Cambridge, England, in September.

MIT team leader James L. Elliot headed the group at the Clay Telescope at Las Campanas Observatory in Chile.

"We have been waiting many years for this opportunity. Watching Charon approach the star and then snuff it out was spectacular," said Elliot, a professor in MIT’s Department of Earth, Atmospheric and Planetary Science and in the Department of Physics.

Jay M. Pasachoff, Williams College team leader and a professor in the Department of Astronomy, said, "It’s amazing that people in our group could get in the right place at the right time to line up a tiny body 4 billion miles away. It’s quite a reward for so many people who worked so hard to arrange and integrate the equipment and to get the observations."

With the Clay Telescope’s 6.5-meter mirror (more than 21 feet across, the size of a large room) the researchers were able to observe changes in fractional seconds throughout the event, which lasted less than a minute. While their electronic cameras sensitively recorded data, the light of the faint star was seen to dim and then, some seconds later, brighten. This kind of disappearance of a celestial body behind a closer, apparently larger one is known as an occultation.

From just how the light dimmed and brightened, the MIT-Williams consortium will look for signs that Charon has an atmosphere. It has very little mass, so has little gravity to hold in an atmosphere, but it is so cold (being some 40 times farther from the sun than the Earth, and thus about 4 billion miles away) that some gases could be held in place by the small amount of Charon’s gravity. The group had previously investigated Pluto’s atmosphere and found a slight global warming there. They had earlier found a similar warming of the atmosphere of Neptune’s moon Triton, which is an analogue of Pluto.

Other telescopes around Chile used by the MIT-Williams consortium included the 8-meter (more than 26 feet across) Gemini South on Cerro Pachon, the 2.5-meter (over 8 feet across) DuPont Telescope at Las Campanas Observatory, and the 0.8-meter (almost 3 feet across) telescope at the Cerro Armazones Observatory of Chile’s Catholic University of the North near Cerro Paranal.

The team had searched for a distribution of telescopes along a north-south line in Chile since the predictions of the starlight shadow of Charon were uncertain by several hundred kilometers. Since the star that was hidden is so far away, it casts a shadow of Charon that is the same size as Charon itself, about 1,200 kilometers in diameter. To see the event, the distant star, Charon, and the telescopes in Chile had to be perfectly aligned. All these telescopes were in clear weather and successfully observed the occultation.

At Las Campanas Elliot and MIT graduate student Elisabeth Adams observed with the Clay Telescope, while Amanda Gulbis, a postdoctoral associate at MIT, and David Osip of the Carnegie Institution of Washington observed with the DuPont Telescope. Williams College scientist Bryce Babcock and Williams undergraduate Joseph Gangestad, joined by MIT graduate student Michael Person, observed with the telescope of Cerro Armazones Observatory in Chile’s Atacama Desert, the telescope that was farthest north. MIT graduate student Susan Kern supervised the observations taken with the giant 8-meter Gemini South project on Cerro Pachon, the southernmost of the telescopes.

Pasachoff and Williams scientist Steven Souza were at a 0.6-meter telescope at the Brazilian National Observatory, Pico dos Dias, northeast of São Paulo. They were joined by Professor Marcelo Emilio of Brazil’s Ponta Grossa State University and his undergraduate student Caroline Czelusniak. However, clouds foiled their observing.

The images from three telescopes in Chile, including the Clay Telescope, and one in Brazil, were taken with new electronic cameras and computer control obtained by MIT and Williams with an equipment grant from NASA. The expeditions were sponsored by NASA’s Planetary Astronomy Program.

Elizabeth Thomson | EurekAlert!
Further information:
http://www.mit.edu

More articles from Physics and Astronomy:

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

nachricht Airborne thermometer to measure Arctic temperatures
11.01.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>