Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Watching the birth and death of exotic molecules

18.07.2005


These four pictures show how the C2 H4 I2 molecule changes shape and composition in a very short period of time.


Researchers from Korea, Italy, France and the ESRF have just observed how a molecule changes structure after being hit with a short flash of laser light. Thanks to very intense pulses of X-rays from the synchrotron and novel data analysis, they were able to confirm a long standing hypothesis regarding the evolution of this molecule. The results are published in the 14 July Science Express, the online counterpart of the journal Science.

The experiment was started by dissolving the molecule C2H4I2 in liquid methanol and then hitting it with a short laser pulse. This excited the molecule, which then cooled down while releasing heat into the surrounding liquid. As a consequence, the temperature rose and the liquid started to expand in response to the increase in temperature. The absorption of light triggered a chemical reaction, which the researchers studied with picosecond time resolution. They measured the change in shape and composition as early as 100 picoseconds after the initial explosion, then at 10 nanoseconds after, then 1 microsecond and so on. All these dancing atoms were confined to a tiny “dance floor” with a radius of about 6 Ångstroms (0.6 nanometres).

Once excited, one of the bonds in the molecule was elongated. The excited molecule then had two fates. One of them was to bounce back to the hot ground-state C2H4I2, which is surrounded by solvent molecules. In the second case, the excited molecule C2H4I2 dissociates and forms C2H4I and I. There are two hypotheses on the structure of the C2H4I radical. The first possibility is that the radical retains a classical structure very similar to the initial structure of C2H4I2-(the anti structure). The second possibility is that the iodine combines with the two carbon molecules in a triangular geometry (bridge structure). This bridged conformation is the structure that prevails, according to the new measurements at the ESRF. The bridged structure has long been hypothesised to explain stereochemical control, but has never been observed directly until now. This research is the outcome of two-years of work involving a Korean research group from KAIST lead by Hyotcherl Ihee and the ID09B team lead by Michael Wulff.



Researchers at the ESRF had already studied the dissociation of molecular iodine some months ago and defined, theoretically and experimentally, the principal reaction channels in photo reactions in liquids. This new work is an important step forward since C2H4I2 is a bigger and more complex molecule and, more importantly, its photoreaction proceeds though novel molecular structures that have never been seen before. This research opens a new door to the study of chemical reactions in liquids. Hyotcherl Ihee, first author of the paper, believes that this technique will be used increasingly in the future: “We envisage to expand it to study other samples, such as nanomaterials and proteins”.

Montserrat Capellas | alfa
Further information:
http://www.esrf.fr/NewsAndEvents/PressReleases/PRESSRELEASEID09/

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>