Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Watching the birth and death of exotic molecules

18.07.2005


These four pictures show how the C2 H4 I2 molecule changes shape and composition in a very short period of time.


Researchers from Korea, Italy, France and the ESRF have just observed how a molecule changes structure after being hit with a short flash of laser light. Thanks to very intense pulses of X-rays from the synchrotron and novel data analysis, they were able to confirm a long standing hypothesis regarding the evolution of this molecule. The results are published in the 14 July Science Express, the online counterpart of the journal Science.

The experiment was started by dissolving the molecule C2H4I2 in liquid methanol and then hitting it with a short laser pulse. This excited the molecule, which then cooled down while releasing heat into the surrounding liquid. As a consequence, the temperature rose and the liquid started to expand in response to the increase in temperature. The absorption of light triggered a chemical reaction, which the researchers studied with picosecond time resolution. They measured the change in shape and composition as early as 100 picoseconds after the initial explosion, then at 10 nanoseconds after, then 1 microsecond and so on. All these dancing atoms were confined to a tiny “dance floor” with a radius of about 6 Ångstroms (0.6 nanometres).

Once excited, one of the bonds in the molecule was elongated. The excited molecule then had two fates. One of them was to bounce back to the hot ground-state C2H4I2, which is surrounded by solvent molecules. In the second case, the excited molecule C2H4I2 dissociates and forms C2H4I and I. There are two hypotheses on the structure of the C2H4I radical. The first possibility is that the radical retains a classical structure very similar to the initial structure of C2H4I2-(the anti structure). The second possibility is that the iodine combines with the two carbon molecules in a triangular geometry (bridge structure). This bridged conformation is the structure that prevails, according to the new measurements at the ESRF. The bridged structure has long been hypothesised to explain stereochemical control, but has never been observed directly until now. This research is the outcome of two-years of work involving a Korean research group from KAIST lead by Hyotcherl Ihee and the ID09B team lead by Michael Wulff.



Researchers at the ESRF had already studied the dissociation of molecular iodine some months ago and defined, theoretically and experimentally, the principal reaction channels in photo reactions in liquids. This new work is an important step forward since C2H4I2 is a bigger and more complex molecule and, more importantly, its photoreaction proceeds though novel molecular structures that have never been seen before. This research opens a new door to the study of chemical reactions in liquids. Hyotcherl Ihee, first author of the paper, believes that this technique will be used increasingly in the future: “We envisage to expand it to study other samples, such as nanomaterials and proteins”.

Montserrat Capellas | alfa
Further information:
http://www.esrf.fr/NewsAndEvents/PressReleases/PRESSRELEASEID09/

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>