Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Predicting the lifetime of extreme ultraviolet optics

15.07.2005


Extreme ultraviolet lithography (EUVL) may be the next-generation patterning technique used to produce smaller and faster microchips with feature sizes of 32 nanometers and below. However, durable projection optics must be developed before this laboratory technique can become commercially viable. As part of its long-standing effort to develop EUVL metrology and calibration services (summarized in a recent paper*), the National Institute of Standards and Technology (NIST) is creating a measurement system for accelerated lifetime testing of the mirrors used in EUVL.



The light to be used in EUVL has a wavelength of only 13 nm. It can only be efficiently reflected with mirrors consisting of 50 alternating bi-layers of molybdenum and silicon, each only 7 nm thick and deposited with near-atomic-scale precision. So although the EUVL mirrors will be very large, up to 35 centimeter (cm) in diameter, they are actually incredibly precise nanostructured devices. A single commercial lithography instrument may require six of these mirrors at a cost of more than $1 million each.

The mirrors are delicate, but the EUV radiation they must reflect is intense and damaging. The combination of this harsh radiation with the trace levels of water vapor and hydrocarbons typically found in the vacuum environment of EUV first-generation exposure tools can lead to rapid corruption of the EUVL mirror surfaces. And a loss of just 1 percent to 2 percent of a mirror’s reflectivity renders the optical system useless for efficient production of nanometer-resolution circuit features.


To help the semiconductor industry meet its goal of EUVL production by 2010, NIST has established a dedicated beamline at its Synchrotron Ultraviolet Radiation Facility for durability testing of multilayer mirrors. Initial tests established that standard mirrors topped with silicon would have lifetimes of just minutes to hours, while ruthenium-capped mirrors had lifetimes of a few tens of hours, still a thousand times less than industry’s requirement.

To determine how damage scales with various parameters, NIST researchers recently exposed EUVL mirrors (provided by SEMATECH from work it co-funded) to varying levels of light intensity, water and hydrocarbon concentrations.

Contrary to expectations, they found that increasing amounts of water vapor caused less mirror damage, which may be due to a simultaneous increase in the ambient hydrocarbon levels. Subsequent experiments have shown that deliberately introducing trace amounts of a simple hydrocarbon like methanol can mitigate significantly the water-induced damage. NIST scientists are commissioning a new beamline devoted to accelerated testing and will add a second branch to the existing beamline that will provide broadband illumination (wavelengths of approximately 11 nm to 50 nm) into a single spot at approximately 100 times the intensity of the current system.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov
http://physics.nist.gov/euvl.

More articles from Physics and Astronomy:

nachricht Mars 2020 mission to use smart methods to seek signs of past life
17.08.2017 | Goldschmidt Conference

nachricht Gold shines through properties of nano biosensors
17.08.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>