Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better temperature control improves NIST X-ray detector

15.07.2005


Researchers at the National Institute of Standards and Technology (NIST) have developed an improved experimental X-ray detector that could pave the way to a new generation of wide-range, high-resolution trace chemical analysis instruments. In a recently published technical paper*, the researchers described how they used improved temperature-sensing and control systems to detect X-rays across a very broad range of energies (6 keV or more), with pinpoint energy resolution (an uncertainty of only 2 eV).



The detector’s ability to distinguish between X-rays with very similar energies should be especially useful to the semiconductor industry for chemical analysis of microscopic circuit features or contaminants. Many types of high-resolution microscopes routinely used in the industry and throughout science produce detailed chemical maps by scanning a surface with electrons and then analyzing the X-rays emitted, which are characteristic of specific elements.

The NIST device, an improved version of its previous microcalorimeter X-ray detector, uses a quantum-level, transition edge sensor (TES). NIST has led development of these sensors for several years. A TES works by measuring the current across a thin metal film that is held just at the knife-edge transition temperature between a superconducting state and normal conductance. A single X-ray photon striking the detector raises the temperature enough to alter the current proportional to the energy of the photon.


TES microcalorimeters offer an unequaled combination of high resolution with detection of a broad energy range, allowing identification of many different chemical elements simultaneously. The two kinds of detectors conventionally used in X-ray microanalysis typically have a resolution of no better than 130 eV, or have a high resolution but only for a very narrow range of energies. TES sensors, however, must be kept at very low temperatures (about 97 millikelvin) for hours at a stretch to collect trace-level data. Tiny changes in temperature would cause previous versions of the instrument to "drift" over time, requiring constant recalibrations. The improved temperature control system for the new detector eliminates this problem, making the system much more practical for a broad range of applications.

Michael Baum | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

nachricht Nuclear physicists leap into quantum computing with first simulations of atomic nucleus
24.05.2018 | DOE/Oak Ridge National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>