Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Media invited to ua mirror lab for july 23 spincasting


Astronomers and supporters from eight institutions around the country who are developing the Giant Magellan Telescope (GMT) will gather at The University of Arizona Steward Observatory Mirror Lab on Saturday, July 23, to celebrate the casting of the first of seven 8.4- meter (27-foot) mirrors for the facility.

With this casting, the GMT becomes the first extremely large ground-based telescope to start construction.

The GMT will feature six giant off-axis mirrors around a seventh on-axis mirror. This arrangement will give it a 22-meter (72-foot) aperture, or 4.5 times the collecting area of any current optical telescope. It will have the resolving power of a 25.6-meter (84-foot) diameter telescope, or 10 times the resolution of the Hubble Space Telescope. The GMT is slated for completion in 2016 at a site in northern Chile. More about the project is online at

Mirror Lab workers began loading 40,000 pounds of glass into the 8.4-meter (27-foot) diameter mirror mold at 6 a.m. Tuesday, July 12, and lowered the furnace lid over the glass at midday July 13. The furnace will be turned on Sunday, June 17, so the glass will melt at peak temperature, 2,150 degrees Fahrenheit (1,178 Celsius) on Saturday, July 23. The furnace will rotate at 5 revolutions per minute as the glass melts around the 1,681 hexagonal cores in the mold. This will produce a ’honeycomb’ mirror blank with a faceplate of the desired curvature. The honeycomb mirror will weigh only a fifth as much as a solid mirror of the same size. More about this mirror casting is online at Media are welcome to interview scientists from GMT partner institutions during the event. NOTE: MEDIA WILL NEED PRESS BADGES FOR LAB ACCESS. GMT partners are the Carnegie Observatories, Harvard University, Smithsonian Astrophysical Observatory, University of Arizona, University of Michigan, Massachusetts Institute of Technology, University of Texas at Austin, and Texas A & M University.

press badges:

To cover the Mirror Lab casting event, news media must apply through the UA Office of University Communications for press badges to be picked up at the Mirror Lab beginning noon, July 23. Media can pick up their credentials with valid identification. To apply for badges, contact the UA Office of University Communications, 520-621-1877.

schedule & interview opportunities:

The Mirror Lab, underneath the east football stadium addition at Sixth Street and Warren Avenue, Tucson, will open to credentialed media at noon Saturday, July 23. Media will be asked to vacate the catwalk and furnace-lid-shelf viewing areas from between 3 p.m. and 5 p.m. to allow GMT guests access. Viewing areas on the mezzanine and at the south end of the casting lab will also be crowded at this time. An accurate model of the Giant Magellan Telescope will be on display at the south area of the casting lab. Lori Stiles from UA’s Office of University Communications and Elizabeth Alvarez del Castillo from UA’s Steward Observatory will help arrange interviews and interview areas.


For b-roll footage that includes steps in the GMT mirror-making process, contact the UA Office of University Communications, 520-621-1877. High-resolution photos of mold core installation, glass inspection, glass loading, spincasting, etc. can be downloaded from the UA Office of University Communications Web site, after tomorrow (July 15) afternoon. Click on "ImageBase" under the Services column at the left of this page, and use "mirror lab" as the search word.

mirror lab media contacts:

Lori Stiles, UA Office of University Communications, 520-626-4402, Elizabeth Alvarez del Castillo, UA Steward Observatory, 520-626-9778, Tina McDowell of the Carnegie Institution of Washington, 202-939-1120,, and Dan Brocious of the Smithsonian Whipple Observatory, 520-670-5706,, are other Tucson contacts during spincasting.

Tina McDowell | UA Office
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>